A为二阶方阵,A E,A-2E不可逆,求(A-E)^-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:52:22
λ^2+2λ+1
(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^
答案选3,因为原式变换得:(A-E)*A=2E;根据可逆阵定义知:0.5*(A-E)和A互为可逆矩阵.
[简单些的证明]用到两个基本结论:1.若AB=0,则r(A)+r(B)
请在此输入您的回答
(4E-A)(-E-A)=-4E+A-4A+A^2=-4E,因此4E-A可逆,其逆为(E+A)/4.反证法:若3E-A可逆,则条件为(3E-A)A=0,左乘3E-A的逆得A=0,矛盾.
A^2+A-4E=OA^2+A=4EA(A+E)=4EA(A+E)/4=E因此,A可逆,且A^-1=(A+E)/4A^2+A-4E=OA^2+A-2E=2E(A-E)(A+2E)=2E(A-E)(A+
则已知,|A|^2=|2E|=2^n所以|A|=±√2^n(C)正确
因为A-E,A+E,A+3E均不可逆所以|A-E|=0,|A+E|=0,|A+3E|=0所以A有特征值1,-1,-3而A是3阶方阵,故1,-1,3是A的全部特征值所以|A|=1*(-1)*(-3)=3
将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1
首先A可逆,要不已知条件本身就不成立.把A乘过来.1.2B=AB-4A2.4A=AB-2B3.4A=(A-2E)B4.由于A可逆,故|A|不等于0,故|(A-2E)B|=4|A|不等于零5.那么|A-
矩阵E-A,E+A,3E-A都不可逆,即1,-1,3是A的三个不同的特征根,所以A一定相似于对角阵.经济数学团队帮你解答,请及时采纳.
A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E
根据特征值的意义以及性质,|A+2E|=0可得,有一特征值-2 (特征值的定义)|2A+E|=0 可得,有一特征值-1/2|3A–4E|=0 可得,有一特征值
A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A
由特征值的定义有Aα=λα,α≠0(λ为特征值,α为特征向量)则有A^2α=A(λα)=λAα=λ^2α即有(A^2-2E)α=(λ^2-2)α也就是说如λ是A的特征值,那么λ^2-2就是A^2-2E
左边的连等式我们可以求出A的三个特征值-1,-2,-3/22A*的特征值是6,3,42A*-3E的特征值是3,0,1,所以2A*-3E的行列式是其三个特征值的乘积,所以是0.
A不可逆,A有零特征值(Ax=0=0x).A-E不可逆,A有1特征值(A-E)x=0等价于Ax=2x,同理有2特征值,于是A^2-A+E的特征值为0^2-0+1=1,1^2-1+1=1,2^2-2+1
因为A+2E,A-E,2A-E均不可逆所以A的特征值为:-2,1,1/2所以A²的特征值为:4,1,1/4A²+E的特征值为:5,2,5/4所以|A²+E|=5×2×(5