A为二阶方阵,A E,A-2E不可逆,求(A-E)^-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:52:22
A为二阶方阵,A E,A-2E不可逆,求(A-E)^-1
设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1

(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^

线性代数 方阵设n阶方阵A满足:A*A-A-2E=0,则必有?1 A=2E2 A=-E3 A-E可逆4 A不可逆

答案选3,因为原式变换得:(A-E)*A=2E;根据可逆阵定义知:0.5*(A-E)和A互为可逆矩阵.

设A为n阶方阵,满足A^2=3A,证明:(1)4E-A可逆;(2)如果A不等于0,证明3E-A不可逆.

(4E-A)(-E-A)=-4E+A-4A+A^2=-4E,因此4E-A可逆,其逆为(E+A)/4.反证法:若3E-A可逆,则条件为(3E-A)A=0,左乘3E-A的逆得A=0,矛盾.

A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1

A^2+A-4E=OA^2+A=4EA(A+E)=4EA(A+E)/4=E因此,A可逆,且A^-1=(A+E)/4A^2+A-4E=OA^2+A-2E=2E(A-E)(A+2E)=2E(A-E)(A+

线性代数选择 若A方=2E(为阶方阵),则.

则已知,|A|^2=|2E|=2^n所以|A|=±√2^n(C)正确

.设A为3阶方阵,且矩阵A-E,A+E,A+3E 均不可逆,则 |A|=?

因为A-E,A+E,A+3E均不可逆所以|A-E|=0,|A+E|=0,|A+3E|=0所以A有特征值1,-1,-3而A是3阶方阵,故1,-1,3是A的全部特征值所以|A|=1*(-1)*(-3)=3

设A为N阶方阵,且A-E可逆,A^2+2A-4E=0,求A+3E的逆方阵

将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1

A ,B为二阶方阵,且2A^(-1)B=B-4E.证明:A-2E可逆.

首先A可逆,要不已知条件本身就不成立.把A乘过来.1.2B=AB-4A2.4A=AB-2B3.4A=(A-2E)B4.由于A可逆,故|A|不等于0,故|(A-2E)B|=4|A|不等于零5.那么|A-

设A为3阶方阵,已知E-A,E+A,3E-A都不可逆,证明A与对角矩阵相似

矩阵E-A,E+A,3E-A都不可逆,即1,-1,3是A的三个不同的特征根,所以A一定相似于对角阵.经济数学团队帮你解答,请及时采纳.

设A为n阶方阵,且A=A^2;,则(A-2E)^-1

A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E

若A为三阶方阵,且|A+2E|=0,|2A+E|=0,|3A–4E|=0,则|A|=

根据特征值的意义以及性质,|A+2E|=0可得,有一特征值-2  (特征值的定义)|2A+E|=0 可得,有一特征值-1/2|3A–4E|=0 可得,有一特征值

已知n阶方阵A满足 A^2-3A+E=0,则A的逆矩阵为多少?

A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A

3阶方阵A的特征值为1,-1,2,则|A^2-2E|=

由特征值的定义有Aα=λα,α≠0(λ为特征值,α为特征向量)则有A^2α=A(λα)=λAα=λ^2α即有(A^2-2E)α=(λ^2-2)α也就是说如λ是A的特征值,那么λ^2-2就是A^2-2E

设A为三阶方阵,且|A+E|=|A+2E|=|2A+3E|=0,则|2A*-3E|=?

左边的连等式我们可以求出A的三个特征值-1,-2,-3/22A*的特征值是6,3,42A*-3E的特征值是3,0,1,所以2A*-3E的行列式是其三个特征值的乘积,所以是0.

3. 设A是 阶实方阵.A,A-E,A-2E均不可逆.则行列式A^2-A+E?

A不可逆,A有零特征值(Ax=0=0x).A-E不可逆,A有1特征值(A-E)x=0等价于Ax=2x,同理有2特征值,于是A^2-A+E的特征值为0^2-0+1=1,1^2-1+1=1,2^2-2+1

线性代数题!要详解 设A是3阶实方阵,A+2E,A-E,2A-E均不可逆,则行列式A^2+E=

因为A+2E,A-E,2A-E均不可逆所以A的特征值为:-2,1,1/2所以A²的特征值为:4,1,1/4A²+E的特征值为:5,2,5/4所以|A²+E|=5×2×(5