抛物面z=x2 y2与平面z=1下方的面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:32:04
z=1与z=x^2+y^2联立:x^2+y^2=1,z=1.这个曲线为以(0,0,1)圆,其中半径为1.所以面积S=πr^2=π
空间点(x0,y0,z0)到平面Ax+By+Cz+D=0的距离为d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)设旋转抛物面z=x^2+y^2上的点为(x,y,z),则到平面x+y+z
令f(x,y,z)=x^2+y^2-z则f`x|(1,2,5)=2x|(1,2,5)=2f`y|(1,2,5)=2y|(1,2,5)=4f`z|(1,2,5)=-1|(1,2,5)=-1故这一点的法向
抛物面上的任意一点(x,y,x^2+y^2)到平面的距离d=|x+y-2(x^2+y^2)-2|/根号6=2|(x-1/4)^2+(y-1/4)^2+7/8|/根号6,所以当x=y=1/4距离最短为7
再答:具体的过程需要加分,至少70分
形心?质心?再问:质心就是形心‘没对啊答案不一样就是没步骤能再做一下吗?再答:复查了,我的计算没问题,你的答案是多少?再问:(0,0,2/3)再答:自变量、因变量,反了。括号里面应当是:根号z。再问:
令x=arcost,y=brsint,得V=∫∫∫dv=∫dt∫abrdr∫dz=∫dt∫abr(c-r^2/2)dr=-2πab∫(c-r^2/2)d(c-r^2/2)=-πab[(c-r^2/2)
z=10-3x^2-3y^2与z=4联立,消去z,得D:x^2+y^2=2.V=∫∫(10-3x^2-3y^2-4)dxdy=3∫dt∫
旋转抛物面z=1-x^2-y^2与z=0(xoy平面)交线为一个半径=1的圆,方程为x^2+y^2=1,设该圆在第一象限部分与X轴和Y轴围成区域为D,根据对称性,V=4∫【D】∫(1-x^2-y^2)
第一个是对的!其余两个都不对!错在:将x^2+y^2=z代入积分式.因为在立体内部x^2+y^2
两种画法1ContourPlot3D函数,画等值面ContourPlot3D[x*y-z==0,{x,-2,2},{y,-2,2},{z,-4,4}]2Plot3D函数,直接画,但是要用点技巧,注意如
dS=√(1+4x^2+4y^2)dxdy,投影:x^2+y^2《1I=∫∫1/(x^2+y^2+(x^2+y^2)^2)*√(1+4x^2+4y^2)dxdy+∫∫1/(x^2+y^2+1)*dxd
R=x^2zRz=x^2由高斯公式:I=∫∫x2zdxdy=∫∫∫x^2dxdydz(xoy平面的投影D:x^2+y^2
换算成柱坐标方程抛物面z=x^2+y^2为z=ρ^2;平面2x-2y-z=1为z=2ρ(cosθ+sinθ)-1它们的交线为ρ^2=2ρ(cosθ+sinθ)-1→cosθ+sinθ=(1/2)(ρ+
椭圆与椭圆所在平面是不同的概念.椭圆是平面上的一曲线,不同于椭圆所在平面.求原点到这椭圆的最长与最短距离.就是求原点到椭圆曲线上的最长与最短距离.
面积=∫∫D√1+4x²+4y²dxdy=∫∫D√1+4p²pdpdθ=∫(0,2π)dθ∫(0,√2)√1+4p²pdp=π/4∫(0,√2)√1+4p
用切片法V=∫s(z)dz更简单些.s(z)是对一个特定的z,所截的椭圆x^2/(4-z)+y^2/[4(4-z)]=1的面积所以s(z)=πab=π√(4-z)*2√(4-z)=2π(4-z)所以V
为了求出在(1,-1.5)点处的法向量考虑z对x和y的偏导数求得切向量(1,0,4)和(0,1,-9)求得法向量为切向量的向量积(-4,9,1)于是切平面方程为-4x+9y+z=-35/4
你列的算式基本上是对的,但是计算过程中有错误,结果确实是1/180.详细过程如下: