d e分别是三角形abc的边bc,ac上的点,ab=ac,ad=ae,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:58:44
d e分别是三角形abc的边bc,ac上的点,ab=ac,ad=ae,
已知三角形ABC,BD,CE是高.G F分别是BC,DE的中点.求证:FG垂直DE

根据题意,相当于以点G为圆心,以GC为半径的圆,E、D在圆上ED是圆G的弦,F平分弦ED,所以GF垂直于ED

如图,已知:三角形ABC中,BD,CE分别是AC,AB边上的高,G,F分别是BC,DE的中点,证明FG垂直DE

连DGFGDGFG直角三角形中线DG=FG=1/2BCGF是等腰三角形中线三线合一FG垂DE

如图所示,在三角形ABC中,DE分别是BC,AD的中点,三角形ABC的面积=4平方厘米,求三角形ABE的面积.

∵BD=DC∴△ABD面积=△ADC面积=△ABC面积/2=4/2=2∵AE=DE∴△ABE面积=△EBD面积=△ABD面积/2=2/2=1∴△ABE=1平方厘米

在三角形ABC中,BD,CE分别是AC、AB上的高,M、N分别是DE,BC的中点,求证:MN垂直DE

证明:因为BD,CE分别是ACAB上的高.所以角BEC=角BDC=90度,因为BN=NC.所以NE=BC/2DN=BC/2,所以EN=DN,所以三角形DEN是等腰三角形,因为EM=MD,所以MN垂直D

如图 d e f分别是三角形abc的ab,ac,bc边上的点,de平行BC,DF//AC.求证三角形ADE相似三角形DB

由DE//BC可知,角ADE=角ABC由DF//AC可知,角BDF=角BAC又因为角B=角B所以三角形ADE相似于三角形DBFAAA定理

如图,在三角形ABC中,D,E,F分别是AB,BC,AC,的中点,AE,DE,EF,将三角形ABC分成四个小三角形

三角形BDE和三角形CFE面积相等我就不解释了.三角形BDE和三角形ADE也是相等的,因为两三角形底相等,AD=BD,且高也相等,都是过E做AB的垂线就是高,根据面积公式就知道底高都相等面积一定相等了

如图,在三角形abc中,d,e,f,分别是边ab,bc,ca上的点,且de平行ac,fe平行ab,df平行bc

答:(1)四边形ADEF是平行四边形,因为EF与AB平行、DE与AC平行,所以是平行四边形.(2)角DEF是角BAC,角EDF是角ACB,角DFE是角ABC,因为角EDF与角AFD相等,角AFD与角A

在三角形ABC中,BD,CE分别是AC,AB边上的高,G,F分别是BC,DE的中点.求证:FG垂直于DE .

证明:连结GE、GD,则因为CE⊥BE,CD⊥BD,G为BC中点所以GE=GD=BC/2(直角三角形斜边的中线等于斜边的一半)因为F为DE中点,GE=GD所以FG⊥DE(等腰三角形的中线垂直于底边)

已知,D是三角形ABC的BC边上的中点,DE垂直ABDF垂直AC垂足分别为E,F,且DE=DF求证三角形ABC

方法一证明边相等(同意楼上)∵D是BC上的中点∴S△ABD=S△ACD∵S△ABD=DE*AB/2S△ACD=DF*AC/2∵DE=DF∴AB=AC∴△ABC为等腰三角形方法二证明角相等∵DE⊥ABD

在三角形ABC中,BD,CE分别是AC,BA边上的高,M,N分别是DE,BC的中点,试说明MN垂直DE

证明:连接EN.DN在RT△BCE中,N是BC中点,∴EN=1/2BC在RT△BCD中,N是BC中点,∴DN=1/2BC∴EN=DN,∴△DEN是等腰三角形∴MN⊥DE(等腰三角形三线合一)

如图,DE分别是三角形ABC的边AC;BC的中点,三角形ABC的面积是24平方厘米,阴影部分的面积是( )平方厘米?

因为DE是中位线,可证三角形CDE的面积占整个24的四分之一,还可以证明AD等于AC的二分之一,因此又能证出三角形ABD的面积占整个图形面积24的二分之一,所以,阴影部分面积你为6+12=18平方厘米

BD,CE分别是三角形ABC中AC,BD边上的高,G,F分别是BC,DE的中点,证明:FG⊥DE

连EG,DG利用直角三角形斜边上的中线等于斜边的一半,可得EG=1/2BC,DG=1/2BCEG=DG三角形DGE是等腰三角形F是DE中点,用三线合一FG垂直于DE

如图所示,三角形ABC,三角形ADE均是顶角为120°的等腰三角形,BC,DE分别是它们的底边

∵三角形ADE是等腰三角形∴AE=AD∵三角形ABC是等腰三角形∴AB=AC∵∠ACB=30°∴∠ACE=120°∴∠AEC=30°∵∠AED=30°所以这道题目应当是错误的.三角形ACE绕A点旋转6

三角形abc中bd、ce是高,g、f分别是bc、de的中,求证fg垂直de

连结EG和DG,BD⊥AC,CE⊥AB,G是BC中点,则EG和DG分别是RT△BCE和RT△BDC的中线,EG=BC/2,DG=BC/2,∴EG=DG,△EDG是等腰△,EF=DF,FG是△EDG的中

如图,在三角形ABC中,DE分别是BC、AD的中点,三角形ABC=4cm²,求三角形ABE的面积,

本题考查的重点知识——等底同高的两个三角形面积相等!∵点D是BC边的中点∴S(⊿ABD)=S(⊿ABC)/2=2∵点E是AD边的中点∴S(⊿ABE)=S(⊿ABD)/2=1(平方厘米)再问:另一题。如

三角形ABC,三角形ADE均是顶角为42度的等腰三角形,BC,DE分别是底边

直接用边角边证明啊AB=ACAD=AE∠BAD=42度-∠DAC=∠CAE两个三角形全等啊)

BD,CE是三角形ABC的高,G,F分别是BC,DE的中点,求证FG=DE

楼主最后的求证好像写错了.根据你给的条件,应该是求证FG⊥DE.证明过程如下:连接DG、EG∵BD⊥AC∴∠BDC=90°又BG=CG∴DG=(1/2)BC∵CE⊥AB∴∠BEC=90°又BG=CG∴

在三角形ABC中,BD、CE分别是AC、AB边上的高,M、N分别是DE、BC的中点,求证:MN垂直DE.

证明:BD垂直AC,CE垂直AB,N为BC的中点==>EN=DN=1/2BC,即三角形EDN为等腰三角形又M为DE的中点==>MN垂直DE