椭圆x^2 16 y^2 9=1上的点到直线:x y-9=0的距离的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:16:39
椭圆x^2 16 y^2 9=1上的点到直线:x y-9=0的距离的最小值
关于高中椭圆的题.已知椭圆的方程为x^2/16+y^2m^2=1,直线y=根号2/2x与该椭圆的一个焦点M在x轴上的摄影

有x^2+(√2/2x)^2/m^2=1化简得(2m^2+1)x^2=2m^2故c^2=x^2=2m^2/(2m^2+1)(交点M的横坐标为右焦点横坐标)而c^2=a^2-b^2=1-m^2看见m^2

点P(x,y)在椭圆x²/4+y²=1上,1)求2x+3y的最大值;2)求(x-1)²+y

设P(2cosa,sina)2x+3y=4cosa+3sina=5sin(a+b),其中tanb=3/4,利用辅助角公式所以当sin(a+b)=1的时候,2x+3y有最大值5(x-1)²+y

已知A1A2是椭圆X^2/25+Y^2/16=1长轴上的两个顶点,P是椭圆上

以线段MN为直径的圆恒经过椭圆的焦点.不妨以右焦点F2(3,0)为例说明.设P(5cosa,4sina),A1(-5,0),A2(5,0)右准线的方程X=25/3A1P的方程为y=(4sina/(5c

已知P(x,y)是椭圆x²/100+y²/36=1上的点,求3x+4y 的最大值与最小值

证法一:依椭圆参数方程,可设x=10cosθ,y=6sinθ.∴3x+4y=30cosθ+24sinθ=6√41sin(θ+φ)(tanφ=5/4)∵sin(θ+φ)∈[-1,1],故所求最大值为:6

已知P(x,y)是椭圆x^2/100+y^2/36=1上的点,求3X+4y的最大值与最小值

参数方程x=10cosθy=6sinθ3x+4y=30cosθ+24sinθ=6(5cosθ+4sinθ)=6√41sin(θ+α)最大值为6√41,最小值为-6√41.再问:这一步6(5cosθ+4

已知椭圆x^2/25+y^2/9=1 P是椭圆上一点

1、就是先设所求点位(x,y),然后找出x,y与已知方程对应曲线点A的关系(将其上的点用x.y表示),然后将对应点A的x,y表示的坐标带入方程化简后x,y的函数关系就是所求点的轨迹可设M(x,y),则

已知 F1F2是椭圆 X^2/4+y^2=1的两个焦点,P 是椭圆上的点

答案为:1这一题只要你学了焦半径就很简单.首先e=椭圆上一点倒左(右)焦点的距离/这一点到左(右)准线的距离(这就是焦半径的公式).所以你设P(x,y)所以:绝对值PF1=a+ex绝对值PF2=a-e

已知P是椭圆x^2/25+y^2/9=1上一点,F1F2为椭圆的焦点,求|PF1|X|PF2|的最大值

由椭圆的定义|PF1|+|PF2|=2a=10由均值不等式a^2+b^2≥2aba^2+2ab+b^2≥4ab(a+b)^2≥4ab则(|PF1|+|PF2|)^2≥4|PF1|*|PF2||PF1|

椭圆最大距离已知:椭圆方程为:x^2/4+y^2=1,圆方程为x^2+(y-4)^2=4,求椭圆上的点到圆上的点的最大距

以圆的圆心为圆心,设一半径为r的圆,恰好与椭圆相切,那么椭圆上该切点到圆心距离最大或最小,再加上原来圆的半径,就可以算出最大距离联立x^2/4+y^2=1x^2+(y-4)^2=r^2消去x,得3y^

数学解析几何已知椭圆x^/9+y^/16=1,过椭圆中心的直线l交椭圆于AB两点,与x轴成60度,P在椭圆上,求三角形P

只需让ab直线为三角形的底,让高最大,求,椭圆上的p点到直线ab最大.设p(x,y)直线l为y=根号3x+b点p在椭圆上也在直线l上联立判别式等于0解出b所以b就是高

点P(x,y)在椭圆x²/25+y²=1上运动,则xy的最大值等于

再问:还有别的方法吗?我们还没学到参数方程。。。再答:再问:啊嘞嘞。。为什么跟之前的答案又不一样了额再答:之前的方程为x^2/25+y^2=1后面用的方程是x^2/25+y^2/16=1

椭圆C,求圆x^2+(y-2)^2=1/4上的点到椭圆C上的距离的最大值与最小值.

椭圆A=2,C=A*E=根号3,B=1圆半径1/2,原点(0,1/2)距离最大值为3/2,最小值为1/2

P(x,y)是椭圆上x^2/4+y=1上的点,F1,F2是椭圆的左右焦点.求x+y的最值,xy的最值,y-2/x+3的最

设x=2cosθ,y=sinθ,则x+y=2cosθ+sinθ=√5sin(θ+φ),所以最大值是√5,最小值是-√5xy=2sinθcosθ=sin2θ,所以最大值是1,最小值是-1第三题,(y-2

P(x,y)是椭圆x^2/4+y^2/9=1上的一点,则Z=2x+y的最大值

P(x,y)是椭圆x²/4+y²/9=1上的一点,则Z=2x+y的最大值是多少设x=2cost,y=3sint,则z=4cost+3sint=4[cost+(3/4)sint]【设

已知P(x,y)是椭圆x^2/25+y^2/16=1上的一个动点,求4x/5+3Y/4的最大值

令x=5cosay²/16=1-cos²a=sin²a所以y=4sina所以4x/5+3y/4=4cosa+3sina=5sin(a+z)其中tanz=4/3所以最大值=

P(x,y)在椭圆x^2/9+y^2/16=1上,则x+y的最大值

椭圆参数方程x=3cosay=4sinbx+y=3cos+4sinb最大值5

已知P(x,y)是椭圆x^2/144+y^2/25=1上的点,求x+y的取值范围.

x^2/144+y^2/25=125x^2+144y^2=3600x+y=t,y=t-x(25+144)x^2-288tx+144t^2-3600=0判别式(-288t)^2-4*(25+144)*(

P(x,y)是椭圆x∧2/16+y∧2/9=1上一点,求y/x的取值范围?是否可以设y/x=t,然后和椭圆的方程联立求范

当然可以,除此之外还有两种简单方法.直观判断  连接OP,看OP的斜率  一看就知道是正无穷到负无穷三角代换 x=4cosa y=3sina

已知椭圆X²/16+Y²/4=1,求该椭圆上的点到直线X+2Y-根号2=0的最大距离

设X+2Y+b=0是与X+2Y-根号2=0平行的椭圆的切线把x=-b-2y代入X²/16+Y²/4=1得:(-b-2y)^2+4y^2=16即:8y^2+4by+b^2-16=0判