椭圆x^2 16 y^2 9=1上的点到直线:x y-9=0的距离的最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:16:39
a=5,b=4按定义,|PF1|+|PF2|=2a=10
有x^2+(√2/2x)^2/m^2=1化简得(2m^2+1)x^2=2m^2故c^2=x^2=2m^2/(2m^2+1)(交点M的横坐标为右焦点横坐标)而c^2=a^2-b^2=1-m^2看见m^2
设P(2cosa,sina)2x+3y=4cosa+3sina=5sin(a+b),其中tanb=3/4,利用辅助角公式所以当sin(a+b)=1的时候,2x+3y有最大值5(x-1)²+y
以线段MN为直径的圆恒经过椭圆的焦点.不妨以右焦点F2(3,0)为例说明.设P(5cosa,4sina),A1(-5,0),A2(5,0)右准线的方程X=25/3A1P的方程为y=(4sina/(5c
证法一:依椭圆参数方程,可设x=10cosθ,y=6sinθ.∴3x+4y=30cosθ+24sinθ=6√41sin(θ+φ)(tanφ=5/4)∵sin(θ+φ)∈[-1,1],故所求最大值为:6
参数方程x=10cosθy=6sinθ3x+4y=30cosθ+24sinθ=6(5cosθ+4sinθ)=6√41sin(θ+α)最大值为6√41,最小值为-6√41.再问:这一步6(5cosθ+4
1、就是先设所求点位(x,y),然后找出x,y与已知方程对应曲线点A的关系(将其上的点用x.y表示),然后将对应点A的x,y表示的坐标带入方程化简后x,y的函数关系就是所求点的轨迹可设M(x,y),则
答案为:1这一题只要你学了焦半径就很简单.首先e=椭圆上一点倒左(右)焦点的距离/这一点到左(右)准线的距离(这就是焦半径的公式).所以你设P(x,y)所以:绝对值PF1=a+ex绝对值PF2=a-e
由椭圆的定义|PF1|+|PF2|=2a=10由均值不等式a^2+b^2≥2aba^2+2ab+b^2≥4ab(a+b)^2≥4ab则(|PF1|+|PF2|)^2≥4|PF1|*|PF2||PF1|
以圆的圆心为圆心,设一半径为r的圆,恰好与椭圆相切,那么椭圆上该切点到圆心距离最大或最小,再加上原来圆的半径,就可以算出最大距离联立x^2/4+y^2=1x^2+(y-4)^2=r^2消去x,得3y^
只需让ab直线为三角形的底,让高最大,求,椭圆上的p点到直线ab最大.设p(x,y)直线l为y=根号3x+b点p在椭圆上也在直线l上联立判别式等于0解出b所以b就是高
再问:还有别的方法吗?我们还没学到参数方程。。。再答:再问:啊嘞嘞。。为什么跟之前的答案又不一样了额再答:之前的方程为x^2/25+y^2=1后面用的方程是x^2/25+y^2/16=1
椭圆A=2,C=A*E=根号3,B=1圆半径1/2,原点(0,1/2)距离最大值为3/2,最小值为1/2
设x=2cosθ,y=sinθ,则x+y=2cosθ+sinθ=√5sin(θ+φ),所以最大值是√5,最小值是-√5xy=2sinθcosθ=sin2θ,所以最大值是1,最小值是-1第三题,(y-2
P(x,y)是椭圆x²/4+y²/9=1上的一点,则Z=2x+y的最大值是多少设x=2cost,y=3sint,则z=4cost+3sint=4[cost+(3/4)sint]【设
令x=5cosay²/16=1-cos²a=sin²a所以y=4sina所以4x/5+3y/4=4cosa+3sina=5sin(a+z)其中tanz=4/3所以最大值=
椭圆参数方程x=3cosay=4sinbx+y=3cos+4sinb最大值5
x^2/144+y^2/25=125x^2+144y^2=3600x+y=t,y=t-x(25+144)x^2-288tx+144t^2-3600=0判别式(-288t)^2-4*(25+144)*(
当然可以,除此之外还有两种简单方法.直观判断 连接OP,看OP的斜率 一看就知道是正无穷到负无穷三角代换 x=4cosa y=3sina
设X+2Y+b=0是与X+2Y-根号2=0平行的椭圆的切线把x=-b-2y代入X²/16+Y²/4=1得:(-b-2y)^2+4y^2=16即:8y^2+4by+b^2-16=0判