概率论AB=BA ,证明A=B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:49:48
证明:由A+2B=AB得(A-2E)(B-E)=2E所以B-E可逆,且(B-E)^-1=(1/2)(A-2E).所以(B-E)(A-2E)=2E整理有BA=A+2B再由已知得AB=BA.
设A,B,A+B,AB四个矩阵的零空间分别是a,b,c,d由于AB=BA,所以a并b包含于d且易知a交b包含于c由维数公式:dim(a)+dim(b)=dim(a并b)+dim(a交b)结合上面两个条
设A,B分别是m*n和n*m矩阵,则AB是m级方阵,BA是n级方阵.所以m=n.
AB=A-B(I+A)(I-B)=I于是(I+A)和(I-B)都可逆,(I-B)(I+A)=I展开得BA=A-B,即有结论.楼上的做法依赖于A可逆,碰到A=B=0这种就不行.
要是能够加一个条件就好了,就是至少一个是可逆的.比如假设A是个可逆矩阵,则r(A)=n,r(AB)=r(B),r(A+B)再问:这个问题确实有些难度,并没有更多的条件,在询问老师的时候,被以研究生考试
若解决问题,希望能采纳.再问:第二步正确吗?再答:德摩根律.一般的数学书上,只要有集合,都有.再答:德摩根律.一般的数学书上,只要有集合,都有.奇怪,怎么重复了两遍.再问:不对吧再答:浙大概论第五页再
AB=A-BAB-A+B-I=-I(A-I)(B+I)=-I(B+I)(A-I)=-IBA-A+B-I=-IBA=A-B所以AB=BA
A(A+B)=AA+AB(A+B)A=AA+BAAA+AB=A=AA+BA所以AB=BA
再问:不妨设,否则。。。这句怎么能这么做?看不懂这里再答:作成pdf文档,楼主可下载查看
AB=BA意味着A和B存在公共特征向量,再由条件可以得到A和B可以同时对角化.
是向量的话就画图解决,是等式的话就用方程的基本性质解决(用定里解决),其他的就没想到
A+B+AB=0(I+A)(I+B)=-I即I+A可逆,逆矩阵为-(I+B).因此(I+B)(I+A)=-I即A+B+BA=0所以AB=BA
一个矩阵A是正规阵的充要条件是存在矩阵X,使得X*AX是对角阵.其中X*是X的共轭转置.于是存在矩阵X,Y使得X*AX=K,Y*BY=J,其中K,J是对角阵,且可记K=diag(K1,K2,...,K
A+B=AB,所以(A-E)(B-E)=E,E是单位矩阵所以,A-E与B-E互为逆矩阵,所以,E=(B-E)(A-E)=BA-A-B+E,得BA=A+B所以,AB=BA
个人认为那个“问题补充”里的条件用不到,就可以证明了.证:由于A和B能做乘法,所以A的列数=B的行数,否则矩阵乘法无法进行.同样B和A也能做乘法,所以B的列数=A的行数.设A是m*n矩阵,则B一定是n
实对称矩阵A,B,分别存在实对称正定矩阵C,D,使得A=C^2,B=D^2则有C'(AB)C=C^-1(CCDD)C=CDDC=C'D'DC=(DC)'DC=E'EE=DC可逆,所以C'(AB)C正定
有一个定理:AB=BA,A,B都相似于对角阵.则存在公共的满秩方阵P.使P^(-1)AP与P^(-1)BP同时为对角形.这个定理还可以推广到{A1,A2.……,Ak}的情况:AiAj=AjAi(i.j
设Q^(-1)AQ=D=diag(a1E,a2E,...,akE),其中a1,a2,...,ak是A的不同特征值,对应重数即为l1,l2,...,lk.在AB=BA中左乘Q^(-1),右乘Q得DQ^(
方法一、证明:因为AB=A(E-A)=A-AABA=(E-A)A=A-AA所以AB=BA方法二、因为A(A+B)=AA+AB(A+B)A=AA+BA所以AA+AB=A=AA+BA即AB=BA再问:方法