正三角形ABC M是BC上任意一点,P是BC延长线上一点.AM=AN

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 19:39:41
正三角形ABC M是BC上任意一点,P是BC延长线上一点.AM=AN
设正三角形ABC的边长为2,M是AB边上的中点,P是边BC上的任意一点,PA+PM的最大值和最小值分别记为s和t,则s2

如图,作M关于BC的对称点M′与A的连线AM′与BC交点时PA+PM取最小值t,当P与C重合时为最大值s=2+3,过A作AD⊥M′M交其延长线于D,易知M′D=3MH=332,又因为AD=12,所以P

一道高一几何题如图:已知AB⊥平面BCE,CD‖AB,△BCE是正三角形,AB=BC=2CD.(1)在线段BE上是否存在

(1)取AB中点记为G,BE中点为FCG平行AD,GF平行AECG交GF于G,AD交AE于A,所以平面ADE平行平面GFCCF属于面GFC所以CF平行平面ADE(2)取AE中点为H,记DC为1,则AD

已知如图C是线段AB上一点,分别以AC,BC为边长在AB同侧作正三角形ACD,正三角形BCE,求证正三角形MCN.

证明:由正三角形ACD、BCE可知AC=CDBC=CE角DCB=角DCE+角ECB=120°角ACE=角ACD+角DCE=120°所以三角形DBC全等于三角形ACE所以角AEC=角ABD因为CB=CE

三角形ABC是正三角形,D是AB上任意一点,延长BC至E,使CE=AD,DE、BC交于点F,求证DF=FE

从D点向AC做一条平行于BE的直线,交AC与G:等边三角形原理,所以DG=AD∵AD=CE∴DG=CE又三角形DGF≌三角形ECF(角边角定理)∴DF=FE

几道 几何题一,如图,在△ABC中,∠A=90°,AB=AC,D是BC的中点,P是BC上任意一点.且PE⊥AB于E,PF

一、作DG⊥AB于G,DH⊥AC于H,PF交DG于K,可知EG=PK=DK=FH,DG=DH,三角形DGE全等于三角形DHF,所以DF=DE二、延长BA和CD交于E,因为BD平分∠CBE,所以BC:B

已知△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于点Q.下面

∠BQM为定值.理由:如图①,∵△ABC是等边三角形,∴∠ABC=∠C=60°,AB=BC∵BM=CN∴△ABM≌△BCN(SAS)∴∠BAM=∠CBN(全等三角形的对应角相等),∴∠BQM=∠BAQ

P是正三角形ABC内任意一点,PE⊥AB,PF⊥BC,PG⊥AC,AD⊥BC,E,F,G,D为垂足,试探讨AD与PE+P

相等.正三角形中AB=BC=AC,面积为S.2S=AD*BC=2S(PAB)+2S(PBC)+2S(PAC)=PE*AB+PF*BC+PG*AC=BC(PE+PF+PG),约掉BC,得AD=PE+PF

正三角形ABC内接与圆O,P是劣弧BC上任意一点,PA与BC交于点E,求证(1)PA=PB+PC (2)PA×PE=PB

(1)在AP上取点D使PD=PC,连接DC角APC=角ABC=60度所以三角形PCD是等边三角形角BPD=角ACB=60度角BPC=120度角ADC=180-60=120度又角PAC=角PBCCD=C

一道图形证明题C是线段AB上一点,一以线段AC、BC为边在AB同侧作两个正三角形ACD,BCE,连接DB,AE.(1)设

(1)、如图1,∵AC=DC,∠ACE=∠DCB=120°,CE=CB,∴△ACE≌△DCB∴∠CAF=∠CDG,AE=DB,又AF=1/2AE,DG=1/2DB,∴AF=DG又AC=DC,∴△ACF

1.已知:D、E、F分别是正三角形ABC边BC、CA、AB上的中点,G是线段DC上的任意一点,△FGH为正三角形,求证:

1.∵△ABC和△FGH为正三角形有FE=FD=1/2ABFG=FH∠DFG=∠EFH=60-∠GFE∴△DFG全等△FEH∴DG=EH2.延长BA至E,使AE=AC∵∠A=120°∴∠CAE=60∴

△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,BN与AM相交于Q点,∠AQN等于

证法一.∵△ABC为正三角形∴∠ABC=∠C=∠BAC=60°,AB=BC在△AMB和△BNC中AB=BC∠ABC=∠CBM=CN,△AMB≌△BNC(SAS),∵∠ANB=∠C+∠NBC=60°+∠

如图,O是正三角形ABC内任意一点,OE⊥BC,OF⊥AC,OD⊥AB,试说明OD,OE,OF的和等于正三角形ABC的高

证明:连接OA,OB,OC设AB=a那么S△ABC=S△OAB+S△OBC+S△OAC所以1/2a*AM=1/2a*OD+1/2a*OE+1/2a*OF两边同时除以1/2a可得AM=OD+OE+OF再

设P是正三角形ABC外接圆的劣弧BC上任意一点,求证:PB+PC=PA,PB*PC=PA^2-PB^2

证明:延长PC至D点,使得PA=PD,连接AD.∵∠DPA=∠CBA=60°,∴⊿PAD是等边三角形,∴DA=PA∵AB=AC,PA=AD,∠BAP=∠CAB-∠PAC=∠DAP-∠PAC,∴⊿APB

高一数学 直线与方程设M是等腰三角形ABC的底边BC的中点 P是直线BC上的任意一点,PE垂直于AB,E为垂足,PF垂直

以M为原点,BC所在直线为X轴作直角坐标系那么AM所在直线为Y轴设A(0,b),B(-a,0),C(a,0)P(c,0)c为不定值那么直线方程都可以表示出来了AB:y=bx/a+bAC:y=-bx/a

已知M是正三角形ABC外接圆上的任意一点,求证;|MA|^2+|MB|^2+|MC|^2为定值

解题思路:用坐标法证明即可,以三角形ABC的中心为原点,平行于三角形一边为坐标横轴,设正三角形ABC的外接圆方程为X^2+Y^2=R^2,解题过程:解:以三角形ABC的中心为原点,平行于三角形一边为坐

如图,点E,D分别是正三角形ABC,正四边形ABCM,正五边形ABCMN,以点C为顶点,一边延长线上的点,且BE=CD,

(1)正三角形ABC中∠AFB的度数为60°(△BCD≌△AEB(SAS),∠EAB+∠D=60°,又∵∠BAC=60°,∴∠AFB=60°)正四边形ABCM中∠AFB的度数为90°(同理,360°减

如图(1)(2)(3),点e,d分别是正三角形abc,正四边形abcm,正五边形abcmn中以c点为顶点的一边的延长线与

(1)∵在△BEF中,∠AFB是外角,∴∠AFB=∠AEB+∠FEB∵∠FBE=∠CBD        (对顶角);∠FEB=∠BDC        (已知条件有△ABE≌△BCD)∵在△BCD中,∠

(1)已知△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点

∠BQM=60°证明:见图③∵BM=CN;BA=CB;∠ABM=∠BCN=60°.∴⊿ABM≌ΔBCN(SAS0,得∠M=∠N.故:∠BQM=∠N+∠NAQ=∠M+∠MAC=∠ACB=60°.再问:;