正方形ABCD中,点E在BC上,点F在AB上,且AF=BE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:14:33
我今天给杨磊和刘文苑讲了这道题、把右上角的三角形旋转下来,拼在左下角.证两次全等、…
(1)y=-1/2x²+x(2)①若∠AEF=90°,∵△AEF∽△ECF,∴∠FAE=∠FEC=∠EAB,∴△ECF∽△ABE,∴AE/EC=EF/CF,EF/CF=AE/BE,∴AE/E
1、当角AFE=90度时,三角形ECF相似于三角形EFA,并且,相似于三角形FDA所以,此时CF=1/2,CE=1/4同理,当角AFE=90度时,CF=1/4,CE=1/2当点F在DC的延长线上时,三
解题思路:首先延长EB至H,使BH=DF,连接AH,证得△ADF≌△ABH,得出∠BAH=∠DAF,AF=AH,进一步得出△FAE≌△HAE,得出∠H=∠AFE,设BH为x,正方形的边长为a,在直角三
连接de,df,将三角形dae以D为旋转中心顺时针旋转90度,E落在BC延长线上H所以DE=DH,因为ae+cf=efae=ch所以ef=cf+ch即ef=fhde=dh,ef=fh,df=df三角形
正方形所以AB=AD角B=角D=90°又AE=AF所以直角三角形ABE和ADF全等(HL)所以BE=DF菱形理由如下因为AC是正方形ABCD的对角线所以角BAC=DAC又角BAE=DAF所以角EAO=
EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9
过H作HN垂直AB于N,过E作EM垂直BC于M,EF交MN于O,四边形EDCM和CHNB是矩形,角EMF=角HNG=90度,EM=CD=BC=HN,EM垂直HN,角FEM=90度角EOH=角GHN,三
(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵AE=AF,∴Rt△ABE≌Rt△ADF,∴BE=DF(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA=∠DCA=4
(1)HL定理证明三角形ADF与三角形ABE全等(2)题目未写完再问:连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM。判断四边形AEMF是什么特殊四边形?并证明你的结论再答:菱形,
解题思路:证全等,运用直角三角形斜边上的中线等于斜边的一半解题过程:不好意思,刚才吃饭了,答案发迟了,如图,连接AE,MD的延长线交AE于G,交AB于H∵M是AF的中点,N是EF的中点∴MN∥AE(三
将三角形ABE逆时针旋转,使AB与AD重合,B点转到B’点.证明三角形AB'F和三角形AFE全等,边角边然后三角形AB'F的面积是8*4/2=16注:B'F=EF=8,AD=4可得
在正方形ABCD中AB=AD,角B=角D=90°所以BE²=AE²-AB²=AF²-AD²=DF²所以BE=DF
BC=4CF,CF/DE=CE/AD=1/2
证明:延长EB至I,使得BI=DF.联结AI.那么,在⊿ABI和⊿ADF中,IE=DF,∠IBA=∠FDA,BA=DA,所以⊿ABI≌⊿ADF.故AI=AF,∠DAF=∠BAI;由此易知∠IAE=45
∵四边形ABCD是正方形∴AB=AD∠B=∠D=90°∴ΔABE和ΔADF是直角三角形在RtΔABE和RtΔADF中;AE=AFAB=AD∴RtΔABE≌RtΔADF﹙HL﹚∴BE=DF回答完毕,
如图,∵BE+CE=BCCF+BF=BCCF=BE∴BF=CE∵四边形ABCD为菱形∴AB=CD∵在△ABF和△DCE中AF=DEBF=CEAB=DC∴△ABF≌△DCE∴∠ABF=∠DCE∵在菱形A
证明:延长AE,DC交于点G,因为在正方形ABCD中,AB∥CD所以∠B=∠ECG,∠BAE=∠CGE又E是BC的中点,所以BE=CE所以△ABE≌△GCE所以AB=CG,在正方形ABCD中,AB=B
(1)∵ABCD是正方形∴∠B=∠D=90°AB=AD又∵AF=AE∴△ABE全等于△ADF∴BE=DF(2)∵AC是ABCD的对角线∴∠DCA=∠BCA∵BE=DF∴FC=EC又∵DC=DC∴△DC