正方形ABCD的边长为a,点P,Q,R,S
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:34:54
1.圆O分别与CD,BC切于点M,N,则OMCN为正方形,则∠OCM=45°,又∠ACM=45°所以A,O,C在同一直线上;圆A与圆O相切与P,则A,O,P在同一直线上(两圆相切,切点在两圆的连心线上
x∈[0,1]时,y=1/2xx∈(1,2]时,y=3/4-1/2(x-1)-1/4(2-x)x∈(2,2.5]时,y=1/2(5/2-x)把y=1/3分别代入三式,解得x=2/3
再问:对称中心是什么?再答:
当点P处在对角线BC上,且角PAB=角PCB=15度时,三距离之和最小,设正方形边长为a,则正方形对角线=√2*a,对角线的一半=(√2)/2*a.则P到正方形中心的距离==(√2)/2*a*tan3
绕点B旋转△APB,使AB与BC重合,p与点Q重合.连接PQ.则易证△PBQ是等腰直角三角形,PQ=2根号2根据勾股定理的逆定理,得∠PQC=90°.∴∠APB=∠BQC=135°过点A作AM⊥BP交
设正方形ABCD的边长为a设PAB以P为顶点的高为b设PBC以P为顶点的高为c1
第一个问题:∵ABCD是正方形,又EF⊥AD、GH⊥AB,∴容易证得:ABFE、ADHG都是矩形,∴BF=AE、DH=AG,又AG=AE,∴BF=DH.∵ABCD是正方形,∴AB=AD、∠ABF=∠A
x+y=大正方形边长因为pqrs是正方形,四个三角形全等由此推出答案.
以A为中心,将△ABE旋转60°到△AMN,连NB,MB,AE+EB+EC=AN+MN+EC因为AE=AN,∠NAE=60°所以AE=NE所以AE+EB+EC=MN+NE+EC当AE+EB+EC取最小
PC=QD,AQ=PB,12-3t=t,t=3,AQ=3,AP=9,PB=3QA=DP,t=12*3-3t,t=9S-PQC=36,PC=6,t=10,Q在AB上,P在DC上,PC=6,QB=2,或假
以A为坐标原点,以AB为X轴正方向,以AD为Y轴正方向建立直角坐标系,则A(0,0),B(2,0),C(2,2),D(0,2),∵P点有对角线AC上,设P(x,x),0<x<2所以.AP=(x,x),
当动点P在A---B间运动时,如图(1) ∵ABCD是边长为1的正方形 ∴ △APE的高是1 而AP=x ,△APE的面积为y ∴ 
根据已知条件先解出AED三边长,用勾股定理.然后再利用相似三角形边长比例相等的关系,分别用不同的边的比值相等.列三个三元一次方程.解出来AEP三种答案,再讨论成立否.求X.不清楚了在问我.按这个先算算
1.用正方形ABCD面积-除△APE外的3个小△PB=X-1PC=2-X则△ADE=0.5*1*0.5,△ECP=1/2-X/4,△=X/2-1/2△APE=Y=1-1/4-1/2+X/4-X/2+1
1)已知DQ=x,AP=x,设矩形ABCD的面积为S1,三角形APQ的面积为S2,则有S1=10*10=100S2=1/2*AP*AQ+=1/2*(10-x)x,所以S=S1-S2=100-5X+1/
当P在边AB上时,△APC的面积=1/2,则高BC=2,所以底边AP=1/2当P在边BC上时,△APC的面积=1/2,则高AB=2,所以底边PC=1/2.所以AP=4-1/2=7/2
如图,四边形ABCD是边长为1的正方形,其中的圆弧是半径为1的圆面的14,正方形的面积是1,14圆面的面积是π4,故阴影部分的面积是1−π4,则点P到点A的距离大于1的概率为1−π41=1−π4,故选
2/3吧,具体过程也太烦人了
取Q∈AB使AQ=3QB则QM=6QN=2∠MQN=∠PBC=60º对⊿MQN用余弦定理MN=2√7再问:请问:如何得出QM=6,QN=2?再答:相似三角形对应边成比例。