e^x-e^sinx与ax^n是等价无穷小
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:02:43
n=3e^tanx-e^sinx=e^sinx×[e^(tanx-sinx)-1]x→0时,e^sinx→1,e^(tanx-sinx)-1等价于tanx-sinx.tanx-sinx=tanx(1-
e^sinx-e^x=e^x(e^(sinx-x)-1)和sinx-x等价而lim(x->0)(sinx-x)/x³=lim(x->0)(cosx-1)/3x²=lim(x->0)
是x→0吗?属于1^(∞)型,取自然对数,用罗彼塔法则,分子、分母同时求导,原式=lim[x→0]ln(x+e^2x)/sinx=lim[x→0][(1+2e^2x)/(x+e^2x)]/cosx=[
是当x->0的吧!先利用等价无穷小代换将sinx^2换成x^2;利用罗必塔法则(两次)原式=lim(e^x-e^-x)/2x=lim(e^x+e^-x)/2=1
点击图片就可以放大,加油!
可用欧拉公式化简:别忘了采纳噢
=2罗比达法则,分子分母求导就得了
f(x)=th(sinx)所以f(-x)=th(-sinx)=-th(sinx)=-f(x)所以f(x)是奇函数
∫(0→x)f(t-n)e^ndt=sinxf(x-n)e^n=cosxf(x-n)=(cosx)/e^nf[(x+n)-n]=cos(x+n)/e^nf(x)=e^(-n)cos(x+n)再问:f(
用罗比达法则,即分子分母同时求导!(0/0型)原式=lim(x→0)[e^x-e^(-x)]/sinx=lim(x→0)[e^x+e^(-x)]/cosx(洛比达法则)=lim(x→0)[e^0+e^
运用洛必达法则对分子分母同时求导(e^x-e^-x)'=e^x+e^x=2e^x(sinx)'=cosx当x=0时,2e^x=2,cosx=1所以x-0lim(e^x-e^-x)/sinx=2/1=2
F(x)=(sinx.e^x-cosx.e^x)/2+cF'(x)=[(cosx.e^x+sinxe^x)-(-sinx.e^x+cosx.e^x)]/2=sinx.e^x
你指的是这个递推公式吧?再问:看不到、再答:这是个百度空间图片,用电脑上去看看吧。手打出来很麻烦的,而且很容易混乱。
换元法:∫(e^x+sinx)/(e^x-cosx)dx=∫d(e^x-cosx)/(e^x-cosx)=ln|e^x-cosx|+C或令u=e^x-cosxdu=(e^x+sinx)dx原式=∫(e
-2再问:我需要过程。。再答:lim(e^tanx-e^3x)/sinx为0/0型,用洛必达法则。分子分母分别求导=lim(csc^2*e^tanx-3e^3x)/cosx=(1-3)/1=-2
有两种方法,都稍微麻烦一些:1、利用罗比达法则,分子分母求导lim(e^sinx-e^x)/(sinx-x)=lim(cosxe^sinx-e^x)/(cox-1)第二次分子分母求导:=lim[(e^
(1)F'(x)=e^x+cosx-a,x=0是极值点,要求F‘(0)=0即a=2(2)依题意,f(x1)=g(x2)=x2,故PQ=|x2-x1|=|f(x1)-x1|=|f(x1)-g(x1)|=
首先,不是说加减法就不能做无穷小替换,我在另一个问题里回答过,你先去看一下,以免被他人(包括你的老师)误导.http://zhidao.baidu.com/question/122716796.htm