求limx⇒0(1-2x)x平方分之一

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:01:23
求limx⇒0(1-2x)x平方分之一
limx趋向1 2x+3/x-1 求极限

/>因为lim【x→1】2x+3=2×1+3=5lim【x→1】(x-1)/(2x+3)=(1-1)/(2×1+3)=0所以lim【x→1】(2x+3)/(x-1)=∞答案:∞

求极限limx→0(x-sinx)/x^2

limx→0[(x-sinx)/x²](0/0型)=limx→0[(1-cosx)/2x](0/0型)=limx→0(1/2)sinx=0.

求极限limx^2/x-1 x->1

先取对数原式化为lim(x-->0)ln[(x+e^2x-1)+1]/x=lim(x-->0)[e^2x-1+x]/x=lim(x-->0)e^2x-1/x+lim(x-->0)x/x=3所以原极限就

求极限limx趋向0+[x^ln(1+x)]

limx趋向0+[x^ln(1+x)]=limx趋向0+[e^(xln(1+x))]=e^limx趋向0+[(xln(1+x))]limx趋向0+(xln(1+x))=0所以limx趋向0+[x^ln

求极限limX^(1/2) lnX (X→0+)

利用洛比达法则limx^(1/2)lnx=limlnx/x^(-1/2)=lim(1/x)/(-1/2)x^(-3/2)=-1/2*limx^(1/2)=0

求limx->0 (1+3x)^(2/sinx)

lim(1+3X)^(2/sinx)x趋近0是(1+0)无穷大的次方的典型是一个极限的重要公式lim(1+3X)^(2/sinx)x趋近0lim3x*(2/sinx)e6limx/sinxelimx/

求极限:limx^(x^x-1),x趋向于0+

结果是e^2x^X-1=e^(xlnx)-1=xlnx好了原式=limx^(xlnx)下面罗比达法则

求limx→0 ln(1+x)/x

x-->0ln(1+x)-->xlim(x-->0)ln(1+x)/x=lim(x-->0)x/x=1再问:第一步怎么弄出来的?再答:无穷小再问:能解释的再详细一点吗?我还是不太懂再答:等价无穷小当x

求极限limx->0(sinx/x)^(1/x^2)

先取自然对数limx->0ln(sinx/x)^(1/x^2)=limx->0(lnsinx-lnx)/x^2(这是0/0型,运用洛必达法则)=limx->0(cosx/sinx-1/x)/2x=li

1、求limx→0[(tanx-x)]/x^2*tanx

再问:第三题里面的a和c都能算出来了。那么b怎么算再答:我看错了,以为是趋于无穷大。再问:第2题最后一步(2/x)/e^x的极限为什么为0,2/x的极限是0,e^x的极限不是不存在吗?这种情况下怎么算

求极限 limx~0 ( 1/ln( x+根号(1+x^2)) -1/ln(1+x))求助

 若有不懂请追问,如果解决问题请点下面的“选为满意答案”.

limx趋于0√x-3x+2求极限

lim(x->0)√(x-1)(x-2)=lim(x->0)=2

求极限limx→0 (cosx)^1/sin^2x

=e^lim(1/sin²x)·lncosx=e^lim(cosx-1)/x²=e^lim-(1/2)x²/x²=e^-(1/2)

已知limx/f(4x)=1,求limf(2x)/x x趋近0

二分之一再问:过程再答:lim(2x)/f(4x)=2:limf(4x)/(2x)=1/2:limf(2x)/(x)=limf(4x)/(2x)=1/2再问:第一步看不懂再答:两边都乘以2

x-0,求limx^x的极限

应该是x→0+e^x,lnx都是连续函数.见复合函数的极限与连续性.

求limx→0[(1-x)^(1/x)]

设A=lim[(1-x)^(1/x)]lnA=limln[(1-x)^(1/x)]=lim[ln(1-x)]/x=1/(x-1)=-1则A=e^(-1)=1/e

limx趋于0,ln(1-2x)/sinx,求极值

当x趋于0时,ln(1-2x)与sinx均趋于0,是0/0型极限由洛必达法则,得limln(1-2x)/sinx=lim-2/(1-2x)cosx当x趋于0时,lim-2/(1-2x)cosx=-2所

求极限:1、limx→﹢∞e^x-e^-x/e6x+e^-x:2、limx→0x-arcsinx/x^3:3、limx→

1.上下同乘e^-x2.lim(x→0)(x-arcsinx)/x^3 (0/0,洛必达法则)=lim(x→0)[1-1/√(1+x^2)]/(3x^2)(通分)=lim(x→0)[√(1+x^2)-

求极限:limx→0 (1-cosx)/2x

替换原则:(1)首先要保证当x趋于某一个常数时,函数是无穷小量(2)加减不能替换,乘除能替换;(3)看代换后四则运算下来的最小量的阶是否与分母可比    &nb