求幂函数nx^n-1的收敛域及函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:09:22
求幂函数nx^n-1的收敛域及函数
求幂级数∑(n=1,∞)nx^n的收敛域与和函数.

把求和项里的x提出来一个s(x)/x=∑(n=1,∞)nx^(n-1)两边同时积分,∫∑(n=1,∞)nx^(n-1)积分得∑(n=1,∞)x^n级数=1/(1-x)-1,(|x|

求级数∑(2n-1)x^(n-1)的收敛区间及和函数

收敛半径是单位圆,如果需要过程再联系我再问:给个过程阿再答:

求幂级数 ( nx^n-1)/(n-1) 的和函数.

记f(x)=∑(n=2~∞)[nx^(n-1)]/(n-1)=∑(n=2~∞)x^(n-1)+∑(n=2~∞)[x^(n-1)]/(n-1)=g(x)+h(x),利用已知级数∑(n=1~∞)x^(n-

求幂级数 ∑(∞,n→0)(2n+1)x^n的收敛域及和函数.

∑(∞,n→0)(2n+1)x^nR=lim|2n-1/2n+1|=1x=1时∑(∞,n→0)(2n+1)发散,x=-1时∑(∞,n→0)(-1)^n(2n+1)也发散,所以收敛域为(-1,1)令s(

求幂级数 ∑[(n^2) * x^(n-1)],其中,n从1到∞ 的收敛区间及和函数.

对里面这个求导即可得到所需的幂级数值,即∑[(n*x^n)'],然后里面的那个式子可以用错位相减法解决,答案为:x/[(1-x)^2].

求幂级数 ∑(∞,n→0)(n+1)x^n的收敛域及和函数.

先求收敛半径r=lim(n→∞)(n+1)/(n+2)=1然后,检验x=1,∑(n=0,∞)(n+1)明显发散检验x=-1,∑(n=0,∞)(-1)^n*(n+1)明显发散因此,收敛域为(-1,1)令

利用幂级数的和函数的性质求幂级数在其收敛域上的和函数∑(+∞,n=1)nx^(n-1),

易知收敛域为(-1,1),因为nx^(n-1)=(x^n)的导数,所以∑nx^(n-1)=(∑x^n)的导数,求得和函数为1/(1-x)^2.再问:神人也!哈,请在详细点可否,小弟我可没那么聪明哦再答

求幂级数∑(∞,n=1)1/nx∧n的收敛域和函数

用柯西判别法可以判断收敛半径为1,另外在1处显然发散,在-1处为莱布尼茨型级数显然收敛,所以收敛域为[-1,1),令S=∑(∞,n=1)1/nx∧n,则S′=∑(∞,n=1)x∧(n-1)=1/(1-

求幂级数和(n=1)nx^(n+1)收敛域和和函数

可用求积求导法求和函数.经济数学团队帮你解答.请及时评价.谢谢!再问:我可以问下,你求敛散时候,根据比值收敛法得出大于1,可以知道/nx^(n-1)/发散,可是绝对值发散不能得出没加绝对值发散,而绝对

求幂级数∑(∞,n=1)nx^n的收敛域及和函数

令原式=f(x)=∑nx^n积分得:F(x)=∑x^(n+1)=x^2/(1-x),当|x|

求幂级数∑(∞,n=1)nx^(n-1)的收敛域及和函数

另an=nx^(n-1)由a(n+1)/an=(n/(n-1))*x

求级数的收敛区间∑(1到无穷) * 2^(-nx) / n^n 尤其是端点处的情况,..

用比值判别法(ratiotest)令an=n!*2^(-nx)/n^na(n+1)/an=(n+1)2^(-x)*n^n/(n+1)^(n+1)=2^(-x)*n^n/(n+1)^n=2^(-x)*[

1求收敛半径及收敛区间.2求和函数

收敛域[-2,2),可用求导求积法求和.

求幂级数1+∑(∞,n=1)x^n/n的收敛半径、收敛域及和函数

f=∑(∞,n=1)x^n/nf‘=∑(∞,n=1)x^(n-1)=1/(1-x)|x|

求幂级数∑(∞,n=1)2nx^(2n-1)/(2n-1)收敛域及和函数

∑(∞,n=1)2nx^(2n-1)/(2n-1)收敛域及和函数1.收敛域显然收敛区间为(-1,1)2nx^(2n-1)/(2n-1)=(2n-1+1)x^(2n-1)/(2n-1)=x^(2n-1)

1.求幂级数∑(∞,n=1) nx^(n+1)的收敛半径、收敛区间.

∑nx^(n+1),a(n)=n,a(n+1)/a(n)->1=>收敛半径R=1,收敛区间(-1,1)看区间端点:x=±1,∑n与∑n(-1)^(n+1)通项极限不存在,故发散=》收敛域(-1,1)再

求幂级数 ∑(n=1,∝) x^n/[n(n+1)] 的收敛区间及和函数

收半径为1,用比值求极限的方法收敛区间是[-1,1]和函数利用构造函数的办法,积两次分就可以了