求曲面3x^2 2y^2=12

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:15:41
求曲面3x^2 2y^2=12
曲面的内法向量曲面S:3Z=X^2+2Y,求S滴内法.是{2X,1,-3}还是{-2X,-1,3}啊,why

只需看法向量其中一个坐标的正负与曲面的内外是否一致根据曲面局部微分性质来做如果已知某点的向量判断是否是内外可以在该点求U,v向的切矢(偏导

过直线{10x+2y-2z=27,x+y-z=0},做曲面3x*x+y*y-z*z=27的切平面,求此切平面方程

设面方程为:(10x+2y-2z-27)+入(x+y-z)=0设切点为X,Y,Z那么在(x,y,z)处,两者偏导数斜率相当6x=10+入2y=2+入-2z=-2-入所以x=1/3y+2/3,z=y代入

计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)

x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²

求教一道高数题 求曲面z=x^2+y^2+3在点M(1,-1,5)处的切平面与曲面z=x^2+y^2+2x-2y所围成的

曲面z=x^2+y^2+3在点M处的法向量n=(2x,2y,-1)|M=(2,-2,-1)写出切平面的方程2(x-1)-2(y+1)-(z-5)=0整理为2x-2y-z+1=0可以写成z=2x-2y+

求原点到曲面z^2=xy+x-y+4的最短距离,

因为上式是一个空间曲面,要求原点到曲面最短距离,可以想象成有个球体与这个曲面相切,球的半径r就是最短距离所以设x^2+y^2+z^2=r^2球与曲面相交即x^2+y^2+xy+x-y+4=r^2进行配

求原点到曲面在z^2=xy+x-y+4的最短距离

很简单!建立方程L(x,y,z,c)=(x^2+y^2+z^2)^1/2+c(z^2-xy-x+y-4)然后分别对L求偏导,最后求的xyzc,最后再代入方程L就是说球的结果!

在曲面z=xy上求一点,使该点处曲面的法线垂直于平面x+3y+z+9=0

http://zhidao.baidu.com/link?url=MDovhDXakNf_-glTeyO3GkfqOhLXNaIcV1ZF7wkYTLFHedpeQ0w89KenXbleQxqnzL-

求锥面z=根号(x^2+y^2)被圆柱面x^2+y^2=2x割下部分的曲面面积(是曲面积分),

对于z=f(x,y),曲面面积为A=∫∫DdA=∫∫D√[1+(əf/əx)²+(əf/əy)²]dxdy锥面z=√(x²+y&#

计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与

用高斯公式:P=x^3,Q=z,R=y,积分区域为圆柱:x^2+y^2=4,与平面z=0,Z=1I=∫∫∫3x^2dxdydz(下面用柱面坐标)=3∫(0,2π)(cosθ)^2dθ∫(0,2)r^3

高等数学旋转曲面问题:(x/2)=y=-(z-1)绕x轴旋转,求此旋转曲面.

设A(x1,y1,z1)为x/2=y=-(z-1)上的任意点,其关于x轴的对称点为A'(x,y,z).易知:x=x1,y1=(x1)/2,z1=1-(x1)/2,y+z=y1+z1→2(y+z)=x-

求曲面围成的立体体积x=0,y=0,z=0,x=2,y=3与x+y+z=4

图为表达式,以下用matlab求解,你可以手算积分!>> clear>> syms x y>> V=int(int

求原点到曲面(x-y)^2-z^2=1的最短距离.

貌似是根号2/2思路是对的呀分别对x,y,z偏导得x/根号(x^2+y^2+z^2)+2к(x-y)=0y/根号(x^2+y^2+z^2)-2к(x-y)=0z/根号x^2+y^2+z^2+2кz=0

求曲面xyz=1和曲面x=y^2交线在点(1,1,1)处的切线和法平面方程

交线y=tx=t^2z=t^(-3)x'(t0)=2,y'(t0)=1,z'(t0)=-3切线方程为(x-1)/2=(y-1)/1=(z-1)/(-3)法平面方程(x-1)*2+(y-1)*1+(z-

求曲面x^2+2y^2+3z^2=21过点(1,2,3)的法线方程?

分别求偏导数,(2x,4y,6z)代入(1,2,3)就得法线方向(2,8,18),即(1,4,9)法线可以写成x-1=(y-2)/4=(z-3)/9

平面x+2y+3z=0到曲面z=x^2+2y的最短距离怎么求

可以转化为最优化问题(在曲面上任取一点,求点到平面距离最小),用拉格朗日乘数法d=|x0+2y0+3z0|/√(1+2²+3²)=|x0+2y0+3z0|/√14目标函数:minf

求y^2=2x绕x轴旋转的曲面方程

求y^2=2x绕x轴旋转的曲面方程x不变,把y²换为y²+z²就是y²+z²=2x

高数曲面和积分问题平面H:4x+8y+z=k是曲面S:z=9-x^2-4y^2的切平面求k计算曲面S与xy平面包围的部分

记F(x,y,z)=x^2+4y^2+z-9则法向量是(Fx.Fy,Fz)=(2x,8y,1)根据平面H:4x+8y+z=k的法向量是(4,8,1)求出(x,y,z)=(2,1,1)代入H中得k=17

求在空间中,方程x^2+y^2-2y=0表示的曲面

x^2+y^2-2y+1=1x^2+(y-1)^2=1平面里表示圆心在(0.1),半径为1的圆空间中,由于Z坐标没限制,所以表示以这个圆为截面的圆柱形的侧面