求曲面z=arctan在点的切平面
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:53:02
令f(x,y,z)=x+xy-z-1,则f'x(x,y,z)=1+y=2,f'y(x,y,z)=x=1,f'z(x,y,z)=-1,因此,在点(1,1,1)处的法向量为(2,1,-1).
答案是1相当于有一个球面:x^2+y^2+z^2=R^2;与z∧2-xy=1相切,求最小的R消去z,得R^2=x^2+y^2+xy+1;相当于求g=x^2+y^2+xy+1的最小值,连续可导,求偏导得
曲面z=x^2+y^2+3在点M处的法向量n=(2x,2y,-1)|M=(2,-2,-1)写出切平面的方程2(x-1)-2(y+1)-(z-5)=0整理为2x-2y-z+1=0可以写成z=2x-2y+
∵e^x-z+xy=3==>z=e^x+xy-3==>αz/αx│(2,1,0)=e²+1,αz/αy│(2,1,0)=2∴在点(2,1,0)处切平面的法向量是(e²+1,2,-1
F(x,y,z)=arctan(y/x)-z∂F/∂x=-y/(x²+y²)∂F/∂y=x/(x²+y²)
令F(x,y,z)=xy-z,则Fx′=y,Fy′=x,Fz′=-1.从而,曲面在P(1,2,2)处的法向量为:n=(Fx′,Fy′,Fz′)|P=(2,1,-1),切平面方程为:2(x-1)+(y-
设F(x,y,z)=xy-z那么它的法向量为n=(Fx,Fy,Fz)=(y,x,-1)(Fx,Fy,Fz为分别对F(x,y,z)的x,y,z求偏导数)又平面x+3y+z+9=0的法向量设为n'=(k,
http://zhidao.baidu.com/link?url=MDovhDXakNf_-glTeyO3GkfqOhLXNaIcV1ZF7wkYTLFHedpeQ0w89KenXbleQxqnzL-
xy-z^2+1=0=>z^2=xy+1x^2+y^2+z^2=x^2+y^2+xy+1=(x+y/2)^2+3y^2/4+1>=1当且仅当x=y=0,z=正负1的时候成立,因此,离原点最近的点是(0
求曲面(e^z)-z+xy=4的切平面及法线方程.设曲面方程F(x,y,z)=(e^z)-z+xy-4=0;点M(xo,yo,zo)是该曲面上的任意一点.∂F/∂x=y;
由题意,设F(x,y,z)=ez-z+xy-3,则曲面在点(2,1,0)处的法向量为n=(Fx,Fy,Fz)|(2,1,0)=(y,x,ez-1)|(2,1,0)=(1,2,0)∴所求切平面方程(x-
曲面x³y-z=0,分别对x、y、z求偏导得法向量(3x²y,x³,1),垂直于平面6x-8y+z+9=0的向量是(6a,-8a,a),所以a=1,解得x=-2,y=1/
方程整理成为F(x,y,z)=x²+y²+z-4=0,切向量=(Fx,Fy,Fz)=(2x,2y,1)=(2,2,1),则法线(x-1)/2=(y-1)/2=(z-2)/1,切平面
写成F(x,y,z)=0的形式,然后分别对x,y,z求导~得到法向量先求导数dF/dx=y,dF/dy=x,dF/dz=e-1;代直得到法向量(1,2,e-1)由此得到切平面:(x-2)+2(y-1)
两边对x求导得z'x-e^x+2y=0z'x=e^x-2y=e-4两边对y求导得z'y+2x=0z'y=-2所以切平面方程为-z'x(x-x0)-z'y(y-y0)+(z-z0)=0即(4-e)(x-
dz=1/y/(1+x^2/y^2)*dx-x/y^2/(1+x^2/y^2)*dy
任意一曲面F(x,y,z)=0在点(x,y,z)的法向量为(Fx,Fy,Fz),那有其法向量了,那切平面就好求了,Fx意思为F对x的偏导数令F(x,y,z)=arctan(y/x)-zFx=(-y/x
令f(x,y,z)=x+xy-z-1,则f'x(x,y,z)=1+y=2,f'y(x,y,z)=x=1,f'z(x,y,z)=-1,因此,在点(1,1,1)处的法向量为(2,1,-1).
令F(x,y,z)=sinz-z+xy-1则偏导数:Fx=yFy=xFz=cosz-1所以曲面sinz-z+xy=1在(2,-1,0)的法向量是:(-1,2,0)
由Z=X平方+Y平方得:F(X,Y,Z)=Z-X平方-Y平方F(X,Y,Z)分别对X,Y,Z求偏导得到:法向量n=(-2X,-2Y,1)带入点(1,1,2)得:n=(-2,-2,1)所以:-2(X-1