求曲面z=xy的平行于平面x 3y z 9=0切平面的方成
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:01:40
设切点为P(x0,y0,z0),故曲面在切点处的切平面的法向量为n={2x0,2y0,−1}又由于n∥(2,2,1),且切点P在曲面上∴2x02=2y02=−11x02+y02+z0=1解得:x0=y
可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就
设曲面上任意一点(x1,y1,z1),易得到此处切平面方程:(2F1+F2)(x-x1)+F2(y-y1)-F1(z-z1)=0显然法向量为(2F1+F2,F2,-F1)假设该定直线一个方向向量为(1
一、先z对x、y分别求偏导数,并令他们分别等零.联立方程求出驻点(x,y).驻点求得:(1,1)、(1,-1)、(-1,-1)、(-1,1)二、再在对z求x、y的二阶偏导和他们的混合偏导.令z对x的二
切平面法向量为(2X,2Y,-1),平行于(2,2,1),则X=Y=-1,切点为(-1,-1-1)切平面方程为2X+2Y+Z+5=0.
z=x²+xy+zy²设f(x,y,z)=x²+xy+(y²-1)z在(1,-1,2)处的切平面方向导数是∂f/∂x=2x+y=2x1-
∵e^x-z+xy=3==>z=e^x+xy-3==>αz/αx│(2,1,0)=e²+1,αz/αy│(2,1,0)=2∴在点(2,1,0)处切平面的法向量是(e²+1,2,-1
先求平面x+3y+z+9=0的法向量:明显,(1,3,1)再求曲面的法向量:明显,(z'x,z'y,-1)=(y,x,-1)其中,z'x,z'y分别表示z对x,y的偏导数两法向量平行:y/1=x/3=
设一点P(x0,y0,z0)对Z求关于X和Y的导Zx=yZy=xZx(x0,y0,z0)=y0Zy(x0,y0,z0)=x0则法线方程为:Z-z0/-1=X-x0/y0=Y-y0/x0且此法线的方向向
设F(x,y,z)=xy-z那么它的法向量为n=(Fx,Fy,Fz)=(y,x,-1)(Fx,Fy,Fz为分别对F(x,y,z)的x,y,z求偏导数)又平面x+3y+z+9=0的法向量设为n'=(k,
http://zhidao.baidu.com/link?url=MDovhDXakNf_-glTeyO3GkfqOhLXNaIcV1ZF7wkYTLFHedpeQ0w89KenXbleQxqnzL-
面积A=∫∫dS,S的方程是x+y=1,即y=1-x,dS=√(1+1+0]dzdx=√2dzdx.求S在zOx面上的投影区域.x+y=1与zox面的交线是x=1.x+y=1与z=xy的交线在zOx面
设切点P0,把曲面方程写成F(x,y,z)=0,则Fx、Fy、Fz在P0的值就是切平面法向量的三个坐标,它们与1、4、6成比例★又切点在曲面上★★据★及★★解出P0.
求曲面(e^z)-z+xy=4的切平面及法线方程.设曲面方程F(x,y,z)=(e^z)-z+xy-4=0;点M(xo,yo,zo)是该曲面上的任意一点.∂F/∂x=y;
设:F(x,y,z)=xy-z,则曲面方程为:F(x,y,z)=0.F(x,y,z)对x,y,z的偏导数分别顺次为:y,x,-1.故曲面在点(x,y,z)处的法线向量为:n=(y,x,-1)面平面x+
由题意,设F(x,y,z)=ez-z+xy-3,则曲面在点(2,1,0)处的法向量为n=(Fx,Fy,Fz)|(2,1,0)=(y,x,ez-1)|(2,1,0)=(1,2,0)∴所求切平面方程(x-
直线x/2=y/-2=z,2x=y=z的一个方向向量:n1={2,-2,1}2x=y=z的一个方向向量:n2={1/2,1,1}平面π的一个法向量n:n=n1×n2={-3,-3/2,3}设H(x,y
写成F(x,y,z)=0的形式,然后分别对x,y,z求导~得到法向量先求导数dF/dx=y,dF/dy=x,dF/dz=e-1;代直得到法向量(1,2,e-1)由此得到切平面:(x-2)+2(y-1)
设切点为(x0,y0,z0)F(x,y,z)=xyz-1Fx=yz,Fy=xz,Fz=xyn=(y0z0,x0z0,x0y0)因为切平面和平面x+y+z=5平行所以y0z0/1=x0z0/1=x0y0
记F(x,y,z)=x^2+4y^2+z-9则法向量是(Fx.Fy,Fz)=(2x,8y,1)根据平面H:4x+8y+z=k的法向量是(4,8,1)求出(x,y,z)=(2,1,1)代入H中得k=17