求曲面z=根号2xy所截部分面积?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 12:17:31
答案是1相当于有一个球面:x^2+y^2+z^2=R^2;与z∧2-xy=1相切,求最小的R消去z,得R^2=x^2+y^2+xy+1;相当于求g=x^2+y^2+xy+1的最小值,连续可导,求偏导得
貌似数字6应该是字母b吧?由x+y+z=b得z=b-x-y,z对x,y的偏导数都是-1.所以截断面的面积A=∫∫(D)√(1+1+1)dxdy=√3×∫∫(D)dxdy,其中D是截断面在xoy面上的投
-(pi*(5*5^(1/2)-27))/6另附Matlab程序段:%此程序为计算空间中给定的曲面r(u,v)的面积clearall;clc;symsuv;%{设置曲面的向量形式r(u,v)=分量函数
两方程联立,z=1=x^2+y^2,在xoy上投影是以原点为圆心,半径为1的圆用柱面坐标:体积=∫dθ(从0积到2π)∫rdr(从0积到1)∫dz(从r^2积到2-r)算出来是5π/6
可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就
因为上式是一个空间曲面,要求原点到曲面最短距离,可以想象成有个球体与这个曲面相切,球的半径r就是最短距离所以设x^2+y^2+z^2=r^2球与曲面相交即x^2+y^2+xy+x-y+4=r^2进行配
z=x²+xy+zy²设f(x,y,z)=x²+xy+(y²-1)z在(1,-1,2)处的切平面方向导数是∂f/∂x=2x+y=2x1-
很简单!建立方程L(x,y,z,c)=(x^2+y^2+z^2)^1/2+c(z^2-xy-x+y-4)然后分别对L求偏导,最后求的xyzc,最后再代入方程L就是说球的结果!
应该先绘制曲面z=xy.matlab程序如下:x=-30:1:30;y=-30:1:30;n=length(x);[xb,yb]=meshgrid(x,y);zb=xb.*yb;%要用xb,yb而不是
借用下:求两个曲面z=2-4x^2-9y^2与z=√(4x^2+9y^2)所围立体的体积V设x=rcosθ/2,y=rsinθ/3,r>0,则原来的两个曲面方程化为z=2-r²,z=r,它们
面积A=∫∫dS,S的方程是x+y=1,即y=1-x,dS=√(1+1+0]dzdx=√2dzdx.求S在zOx面上的投影区域.x+y=1与zox面的交线是x=1.x+y=1与z=xy的交线在zOx面
xy-z^2+1=0=>z^2=xy+1x^2+y^2+z^2=x^2+y^2+xy+1=(x+y/2)^2+3y^2/4+1>=1当且仅当x=y=0,z=正负1的时候成立,因此,离原点最近的点是(0
1e^z=xyze^zz'x=yz+xyz'xz'x=yz/(xy-e^z)=yz/(xy-xyz)=z/(x-xz)类似z'y=z/(y-yz)dz=[z/(x-xz)]dx+[z/(y-yz)]d
S(0,1)dyS(1-y,1)2xydx=S(0,1)x^2ydxx范围(1-y,1)=S(0,1)(y-y(1-y)^2)dy=S(0,1)(y-y^2+2y-1)dy=S(0,1)(-y^2+3
高斯公式法.取Σ:x²+y²=1,前侧补Σ1:z=3,上侧补Σ2:z=0,下侧补Σ3:x=0,后侧∫∫(Σ+Σ1+Σ2+Σ3)ydzdx=∫∫∫Ω(0+1+0)dxdydz=∫∫Ω
如果我没算错的话,应该是PI/4,PI就是圆周率∫∫(1-4x^2-y^2)dS,S为区域4x^2+y^2
这道题目最关键是要明白各个面的位置关系.大概如下:在x+y=1,x=0,y=0圈起来的空间内,曲面z=xy在平面z=x+y之下(∵xy≤x≤x+y),因而立体在xoy平面上的投影为x+y=1,x=0,
消去z,(x^2+y^2)^2=2-(x^2+y^2),(x^2+y^2)^2+(x^2+y^2)-2=0,{(x^2+y^2)-1][(x^2+y^2)+2]=0,后者大于零,则x^2+y^2=1,
记F(x,y,z)=x^2+4y^2+z-9则法向量是(Fx.Fy,Fz)=(2x,8y,1)根据平面H:4x+8y+z=k的法向量是(4,8,1)求出(x,y,z)=(2,1,1)代入H中得k=17