求曲面z=x²+y²与z=√x²+y²所围成的体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:24:28
求曲面z=x²+y²与z=√x²+y²所围成的体积
计算三重积分∫∫∫Z√(x∧2+y∧2)dv,其中Ω是由曲面z=x∧2+y∧2,平面z=1所围成的立体

再问:再问:请问为什么这样不行呢再答:不能直接将立体方程代入,那是曲面积分的算法因为三重积分的被积函数是建基于整个立体空间,而不只是外面的曲面方程这点你要记住了,以后学曲面积分时又会遇上同样问题了,所

求教一道高数题 求曲面z=x^2+y^2+3在点M(1,-1,5)处的切平面与曲面z=x^2+y^2+2x-2y所围成的

曲面z=x^2+y^2+3在点M处的法向量n=(2x,2y,-1)|M=(2,-2,-1)写出切平面的方程2(x-1)-2(y+1)-(z-5)=0整理为2x-2y-z+1=0可以写成z=2x-2y+

求曲面z=x²+2y²与z=6-2x²-y²所围成的立体体积 (求:图怎么画.)

再答:那个图画得可能有点纠结,但就是那样的,开口向上的是z=x^+2y^2,开口向下的是z=6-2x^2-y^2再答:这个是二重积分后面的练习题,也可以用三重积分来做再答:再答:被积函数为1的三重积分

x≠y≠z,x+y分之一=y+z分之一=z+x分之一,求x²y²z²

题目所给条件不够明白,如为x+(1/y)=y+(1/z)=z+(1/x),则:x-y=(1/z)-(1/y)=(y-z)/(yz),y-z=(1/x)-(1/z)=(z-x)/(zx),z-x=(1/

求曲面围成的立体体积x=0,y=0,z=0,x=2,y=3与x+y+z=4

图为表达式,以下用matlab求解,你可以手算积分!>> clear>> syms x y>> V=int(int

求曲面z=(x^2+y^2)^0.5与z=1+(1-x^2-y^2)^0.5围成立体的体积?

曲面1为锥面z²=x²+y²的上半平面曲面2为球面x²+y²+(z-1)²=1的上半平面两者相交曲线为x²+y²=1这个

1.设z=z(x,y)是由方程式e的z次方=xyz所含的隐函数,求dz 2.计算出曲面z=2-x^-y^2与xoy坐标面

1e^z=xyze^zz'x=yz+xyz'xz'x=yz/(xy-e^z)=yz/(xy-xyz)=z/(x-xz)类似z'y=z/(y-yz)dz=[z/(x-xz)]dx+[z/(y-yz)]d

用三重积分求曲面z=2-(x^2+y^2)与z=X^2+y^2所围立体体积

稍等再答:再答:降三重积分为二重积分最简单。

求曲面z=x^2+y^2与平面x+y+2z=2的交线到坐标原点的最大和最小距离

联立两个方程即为直线的方程.把两个面方程的法向量叉乘可得到直线的方向向量.令Z等于一个数(比如1).可得到直线上的一个点(1,-1,1).便可得直线的点向式方程和参数方程.没算错的话参数方程应该是{x

求曲面z=1 4x^2 y^2与xoy面所围成的立体的体积

如果我没算错的话,应该是PI/4,PI就是圆周率∫∫(1-4x^2-y^2)dS,S为区域4x^2+y^2

如何求由曲面z=√x^2+y^2,x^2+y^2=2ax与平面z=0围成的立体的体积,

它是由圆锥面、圆柱面和XOY平面围成.用极坐标做较方便.z=√x^2+y^2变成z=ρ,,x^2+y^2=2ax变成ρ=2acosθ,积分区域D:0

若x+2y-4z=0 3x+y-z=0 求x:y:z

①x+2y-4z=0②3x+y-z=0①-2②x-6x-4z+2z=05x=2z代入①z=5x/2x+2y-10x=02y=9xy=9x/2x:y:z=1:9/2:5/2=2:9:5

求平面x+y+z=2与曲面x^2-2y^2+2z^2=1(x,y,z>0)之间的最短距离

/>曲面的切平面为xXo-2yYo+2zZo=1求最短距离,则切平面与平面x+y+z=2平行即Xo/1=-2Yo/1=2Zo/1即Xo=-2Yo=2Zo即2xZo+2yZo+2zZo=1即2Zo(x+

求曲面 xyz=1的切平面 使其与x+y+z=5 平行

设切点为(x0,y0,z0)F(x,y,z)=xyz-1Fx=yz,Fy=xz,Fz=xyn=(y0z0,x0z0,x0y0)因为切平面和平面x+y+z=5平行所以y0z0/1=x0z0/1=x0y0

x=y/z=z/3,x+y+z =12,求2x+3y+4z是多少,

3元一次方程,好像是初一的问题哦.根据前面两个等式可以得出x=3zy=z(平方)/32x+3y+4z=2*(3z)+3*(z方/3)+4z现在变成了一元二次方程,你应该会解吧.

高数曲面和积分问题平面H:4x+8y+z=k是曲面S:z=9-x^2-4y^2的切平面求k计算曲面S与xy平面包围的部分

记F(x,y,z)=x^2+4y^2+z-9则法向量是(Fx.Fy,Fz)=(2x,8y,1)根据平面H:4x+8y+z=k的法向量是(4,8,1)求出(x,y,z)=(2,1,1)代入H中得k=17

平面3x-ky-3z+16=0与曲面3x^2+y^2+z^2=16相切,求k

设切点为M(x0,y0,z0)3x^2+y^2+z^2=16在该点处的法向量可以表示为n0=(3x0,y0,z0).应该满足3x0:y0:z0=3:(-k):(-3)得到y0=-kx0z0=-3x0把