f(x)=xsin1 x 在x=0处的连续可导

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 14:07:44
f(x)=xsin1 x 在x=0处的连续可导
若奇函数f(x)在x>0时f(x)=sinx-cosx求x

当x0所以f(-x)=sin(-x)-cos(-x)=-sinx-cosx因为是奇函数所以f(-x)=-f(x)所以-f(x)=-sinx-cosx所以f(x)=sinx+cosx

证明f(x)=1/x+2,在x>0时,f(x)单调递减

设0<x1<x2,则f(x2)-f(x1)=(1/x2+2)-(1/x1+2)=1/x2-1/x1=(x1-x2)/(x1x2)∵x1<x2x1,x2>0∴f(x2)-f(x1)<0∴f(x2)<f(

已知奇函数f(x)在x>0时f(x)=sinx-cosx,求x

_f(x)=f(-x):f(x)=-f(-x)=-sin(-x)+cox(-x)=sinx+cox

设f(x)在[a,b]上有二阶导数,且f''(x)>0,证明:函数F(x)=[f(x)-f(a)]/(x-a) 在(a,

F'={f'(x)(x-a)-[f(x)-f(a)]}/(x-a)^2原命题等价于证f'(x)(x-a)-[f(x)-f(a)]>=0G=f'(x)(x-a)-[f(x)-f(a)],a0a再问:帅哟

设f(x)在x=0处连续,且lim(x趋于0)f(x)/x存在,证明,f(x)在x=0处可导

lim(x→0)f(x)/x存在说明x→0,limf(x)=f(0)=0所以limf(x)/x=lim[f(x)-f(0)]/x=f'(0)所以在x=0处可导

定义在R上的奇函数f(x)满足f(1-x)=f(x),切当x∈[0,1/2]时,f(x)=x*2^x

1)当x∈[-1/2,0]时,则-x∈[0,1/2],又为f(x)定义在R上的奇函数,即有:f(-x)=(-x)*2^(-x)=-f(x),即:f(x)=x*2^(-x)当x∈[1/2,1]时,1-x

定义在R上的函数f(x)满足f (x + y) = f (x) + f ( y )(x,y∈R),当x>0时,f (x)

设x10,所以f(x2-x1)>0f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)所以f(x1)-f(x2)=-f(x2-x1)

设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]

我的证明方法不太好,不过凑合能证出来.由中值定理,F(x)=(f(x)-f(a))/(x-a)=f‘(c)c∈【a,x】对任意x1>x,有(f(x1)-f(x))/(x1-x)=f'(c1)c1∈【x

函数f(x)在[1,2]有二阶导数,f(2)=0,F(x)=(x-1)²f(x).则f``(x)在[1,2]上

F(x)在[1,2]上连续,(1,2)内可导且F(1)=F(2)由罗尔定理,至少存在一点x.∈(1,2],使F`(x.)=0,又F`(x)=2(x-1)f(x)+(x-1)²f`(x).则F

设函数f(X)定义在(0,+∞)上,f(1)=0,导数f'(x)=1/x,g(x)=f(x)+f'(x) .

f'(x)=1/x所以f(x)=lnx+cf(1)=0c=0f(x)=lnxg(x)=lnx+1/x(x>0)g(1/x)=x-lnx(x>0)g(x)-g(1/x)=2lnx+1/x-x另F(x)=

设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f'(x)=1/x,g(x)=f(x)+f'(x).

证明:假设存在x0>0,使|g(x)-g(x0)|<1/x成立,即对任意x>0,有Inx<g(x0)<Inx+2/x,(*)但对上述x0,取x1=eg(x0)时,有Inx1=g(x0),这与(*)左边

x-2 ,X>=0 f(x)=f[f(x+5)],x分段函数f(x)= x-2 ,X>=0 f[f(x+5)],x

很简单!∵求的是f(14)的值∴x=14又∵当x≥0时,f(x)=x-2∴把x=14代入f(x)=x-2即f(14)=14-2f(14)=12

已知函数f(x)=ln(x+m),g(x)=e^x-1,F(x)=g(x)-f(x)在x=0处取得极值.

1、F(x)=g(x)-f(x)=(e^x-1)-ln(x+m)F'(x)=e^x-1/(x+m)当x=0时,F'(x)=0,即e^0-1/(0+m)=0,m=1F'(x)=e^x-1/(x+1)当x

f(x)在x=a处有二阶导数,求证x趋于0时lim(((f(a+x)-f(a)/x}-f‘(a))/x=1/2f''(a

由已知,f(x)在x=a存在二阶导数,可知f(x)一阶导数在x=a的临域内连续导数定义 开始证明 所以原式的极限为 f''(a) 亲,你要的已上

若函数f(x)在x=0处连续,且lim{x趋近0}f(x)/x存在,试证f(x)在x=0处可导

证明:∵limf(x)/x存在,且x→0(当x→0)∴f(x)→0(当x→0)又∵f(x)在x=0处连续∴f(0)=0limf(x)/x=lim[f(x)-f(0)]/(x-0)=f'(0)∴f(x)

设函数f(x)定义域在(0,+∞)上,f(1)=0导函数f'(x)=1/x,g(x)=f(x)+f'(x)

暂时弄出了前两个问,不知道对不对.(1)因为f‘(x)=1/x所以f(x)=lnx+c又因为f(1)=ln1+c=0所以c=0所以g(x)=lnx+1/x令g’(x)=1/x-1/(x的平方)=0得x

(管理、文科)极限limx→0xsin1x=(  )

由三角函数的定义可知:|sin1x|<1,由函数极限的性质可知:limx→0x=0故有:limx→0xsin1x=0故选择:B.

f(x) 在定义域(0,正无穷)上是增函数,满足f(2)=1,f(xy)=f(x)+f(y).求不等式f(x)+f(x-

3=1+1+1=f(2)+f(2)+f(2)=f(2*2)+f(2)=f(4*2)=f(8)f(x)+f(x-2)=f(x*(x-2))=f(x^2-2x)结合定义域知识,所以f(x)+f(x-2)0

定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(x/5)=0.5f(x)

f(1/2)=1/2,f(1)=1f(1/10)=1/4,f(1/5)=1/2f(1/50)=1/8,f(1/25)=1/4f(1/250)=1/16,f(1/125)=1/8f(1/1250)=1/

f(x)定义在(0,+无穷大) 当x>1时 f(x)>0,且f(xy)=f(x)+f(y) 解不等式f[x(x-1/2)

f(x)=f(x×1)=f(x)+f(1),f(1)=0当x>1时f(1)=f(x×1/x)=f(x)+f(1/x)=0因为f(x)>0所以f(1/x)