等边三角形ABC和三角形CDE,求证角BMC=角DMC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:51:02
等边三角形ABC和三角形CDE,求证角BMC=角DMC
如图,三角形ABC和三角形CDE都是等边三角形,试说明角AEB-角EBD=60度

在△AEC和△BDC中,AC=BC∠ACE=60°-∠ECB=∠BCDEC=DC所以△AEC≌△BDC故∠CBD=∠CAE从而∠EBD=∠EBC+∠EAC由于∠AEB+∠BED+∠DEC+∠CEA=3

一道初中几何证明题如图,三角形ABC和三角形CDE都是等边三角形.求证FG平行BE

这题太简单了.三角形ABC和三角形CDE都是等边三角形AB=BCCD=CE∠ACB=∠DCE=60度∠BCD=∠ACE∠ACD=60度△BCD全等△ACESAS∠DBC=∠CAEAB=AC∠ACB=∠

如图:已知B、C、D在一条直线,三角形ABC和三角形CDE为等边三角形,求证AD=BE

∵△ABC和△CDE为等边三角形,∴AC=CB,CD=CE,∠ACB=∠DCE=60°,又BCD在一条直线上,∴∠ACD=∠BCE=∠DCE+∠ACE=∠ACB+∠ACE,∴△ACD≌△BCE(边角边

△ABC和△CDE均为等边三角形,B、C、E在同一条直线上.求图中 三对 全等三角形的

(1)BC=AC,∠ACE=∠BCD=120°,CD=CE可得△ACE≌△BCD有∠CAE=∠CBDBC=AC,∠MCB=∠ACH=60°可得△ACH≌△BCMCM=CH(2)CM=CH,∠MCH=6

已知,如图,△ABC和△CDE都是等边三角形,

1.AD=BE,∠AEB=60°,证明如下:∵ΔABC,ΔCDE是正Δ∴CB=CA,CE=CD,∠BCA=∠ECD=60°∴∠BCE=∠BCA+∠ACE=∠ECD+∠ACE=∠ACD∴ΔBCE≌ΔAC

已知;如图,三角形ABC和三角形CDE都是等边三角形且点E在BC上,连接BD,AE,1求证;BD=AE 2若将等边三角形

没有图,我只好按照自己画的位置来证明了证明:(1)∠ACE=∠DCE+∠ACD,∠BCD=∠BCA+∠ACD∵△ABC和△CDE都是等边三角形,∴∠BCA=∠DCE=60°∴∠ACE=∠BCD在△AC

如图,三角形ABC和三角形CDE都是等边三角形,试说明角AEB减角EBD等于60度

证明:延长BE交AC于F因为ΔABC和ΔEDC是等边三角形所以AC=BC,CE=CD,∠ACB=∠ECD=60°所以∠ACE=BCD所以△ACE≌△BCD(SAS)所以∠CAE=∠CBD根据“三角形任

如图三角形ABC与三角形CDE都为等边三角形,且A,C,E共线.

经鉴定,本题不但无图,而且无真相提问几乎一定应该是AD和BE夹角,图几乎一定是B、D在直线AE同侧,C在线段AE上,答案几乎一定是60°.我先按这个证明:设AD交BE于O,等边三角形说明∠DCE=∠A

如图,△ABC和△CDE都是等边三角形,且点A,C,E在一条直线上.试说明三角形MNC为等边三角形

∵△ABC、△CDE都是等边△,∴∠ACB=∠ECD=60°,∴∠BCD=60°,∴AC=BC,DC=EC,∠ACD=120°=∠BCE,∴△ACD≌△BCE﹙SAS﹚,∴∠DAC=∠EBC,即∠MA

如图,△ABC和△CDE都是等边三角形,且点A,C,E在一条直线上,连接MN,试说明三角形MNC为等边三角形

∵△ABC、△CDE都是等边△,∴∠ACB=∠ECD=60°,∴∠BCD=60°,∴AC=BC,DC=EC,∠ACD=120°=∠BCE,∴△ACD≌△BCE﹙SAS﹚,∴∠DAC=∠EBC,即∠MA

如图,已知三角形ABC和三角形CDE都是等边三角形,且满足∠EBD等于40度,求∠AEB的度数.

等边△ABC和等边△DCE∴∠ACB=∠DCE=∠ABC=∠ECD=60°在△ACE与△BCD中∵∠ACB=∠ECD⇒∠ACB-∠ECB=∠ECD-∠ECB⇒A

如图所示,三角形abc和cde都是等边三角形,ad与be交于点m,联结mc,求∠bmc=∠dmc

因为三角形ABC是等边三角形,所以AC=BC角ACB=角BAC=60度,因为三角形CDE是等边三角形,所以CD=CE角ECD=角DCE=60度,因为角ACD=角ACE+角DCE=角ACE+60角BCE

三角形ABC 三角形CDE为等边三角形 M,N为AD BE 中点 求证三角形CMN为等边三角形

△ACD≌△BCE(易证),∠CAD=∠CBE,AD=BE,∵M,N为AD,BE中点,∴AM=BN,∵AB=BC,∴△ACM≌△BCN,∴CM=CN,∠ACM=∠BCN,∵∠ACM+∠BCM=60°,

三角形ABC和三角形CDE是等边三角形,AD和BE相交于点F

图中点B.C.D三点在同一)直线上则AD和BE的大小关系时(相等)他们所成的∠AFB=(角EFD)

如图,点B,C,D在同一条直线上,三角形ABC和三角形CDE都是等边三角形,BE交AC于F,AD交CE于H

(1)∵BC=ACCD=EC∠BCE=∠ACD=120°∴三角形BCE≌三角形ACD得证(2)∵AB‖EC∴EF/FB=EC/AB同理AC/ED=CH/HE又∵AB=ACEC=ED∴EF/FB=EH/

如图,三角形ABC和三角形CDE都是等边三角形,且点A,C,E在一条直线上

1):证明△ADC与△BCE全等,所以AM=BN2):用相同的方法证明三角形全等,因为有两个等边三角形,所以肯定有相等角为60°,所以可以证明三角形MNC是等边三角形

如图B、C、D三点共线,三角形ABC和三角形CDE都是等边三角形,AD和BE相交于点F求证CG=CH

BC=AC,CE=CD,∠BCE=∠ACD所以得出三角形BCE和三角形ACD全等所以∠BEC=∠ADC又因为CE=CD,∠HCD=∠GCE=60度所以得出三角形HCD和三角形GCE全等因此CG=CH

等边三角形abc和等边三角形cde,求证:bd=ae

证明:∵△ABC和△CDE都是等边三角形∴BC=AC,CD=CE,∠ABC=∠DCE=60°∴∠BCD=∠ACE∴△BCD≌△ACE(SAS)∴BD=CE