limxn=a limyn=b 证明 limynxn=ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:54:39
limxn=a limyn=b 证明 limynxn=ab
关于函数极限唯一性收敛数列极限的唯一性证明中,limXn=A,limXn=B,且A≠B,令d=/A-B/,即ε=d/2.

这个惟一性定理的证明,用的反证法.用反证法证题的关键是合理地“制造”矛盾,及时发现并揭露矛盾.O客认为,在世界上首次用取ε=d/2来证明出这个定理的人,一定是本人(或借鉴他人)经过无数次的尝试,为解决

设数列Xn有界,limYn=o ,limn趋向于正无穷.证明limXn.Yn=0

{Xn}有界,说明存在N,使得│Xn│≤NlimXn×Yn≤lim(N×Yn)=N*limYn因为limYn=0所以N*limYn=0,即limXn×Yn=0

设X1≥0,Xn=√﹙2+Xn-1﹚ ﹙n=2,3...),求极限limXn

问题一般化:设X1≥0,Xn=√( a+X[n-1]) ﹙n=2,3...),求极限limXn首先,对任意正整数n,xn>0;  其次,x1<x2.

证明:若数列xn满足lim(Xn+1-Xn)=l,则limXn/n=l

因为lim(Xn+1-Xn)=l根据极限的定义,对于任意ε>0,存在N1>0使n>N1时|Xn+1-Xn-l|N2时|1/n|X1N1使得n>N3时有|1/n|(|(X2-X1-l)|+...+|XN

证明数列包不等性时,若limxn=a,limyn=b,且a

ε>0是任意的,取什么都没关系,取什么都有某个N,当n>N时,|xn-a|

证明极限的唯一性.由limxn=A,limxn=B,则对于ε1>0,ε2>0,分别存在N1,N2∈N*,当n>N1时,|

(A-ε,A+ε)与(B-ε,B+ε)分别是A,B的ε领域,如果A不等于B,那么肯定当ε足够小的时候是不相交的.那么xn就不可能同时存在于这两个集合.

当n趋于无穷时,lim|Xn|=0,则limXn=0.怎么证明?

|Xn|=+Xn或者-Xnlim|Xn|=0,肯定limXn=0

已知limXn=a求证lim|Xn|=|a|

证明:若limXn=a,则lim|Xn|=|a|.证明:①对任意ε>0由:lim(n->∞)Xn=a,对此ε>0,存在N∈Z+,当n>N时,恒有:|Xn-a|∞)|Xn|=|a|.

求个具体证明过程.谢谢X趋近无穷.设limXn=A,limYn=B,根据数列极限定义证明:limXn+Yn=A+B

任取ε〉0由limXn=A,limYn=B知存在N1,N2当n>N1时|xn-A|N2时|yn-B|N时|xn+yn-A-B|≤|xn-A|+|yn-B|≤ε/2+ε/2=ε故limXn+Yn=A+B

证明数列极限保序性的推论2:若limXn=a 且aN时 Xn

limXn=a任意ε>0,存在N>0,当n>N,有|Xn-a|

有关极限下面的求极限都是对于n趋于无穷大时的设limxn=a且a>b,证明一定存在一个整数N,使得n>N时,xn>b恒成

按照定义任意ε>0,存在N,n>N,|xn-a|Na-xnb成立求个最佳!好多年没见到最佳了.

设limXn=a,证明lim|Xn|=|a| n→∞ n→∞

对任意的ε,存在正整数N,使得当n>N时,|Xn-a|

X(n+1)=(Xn+9/Xn) ÷2,X1=1,求证limXn存在,并求limXn

X(n+1)=(Xn+9/Xn)÷2,X1=1可知Xn>0又Xn+9/Xn≥2√(Xn*9/Xn)=2√9=6(均值不等式)当且仅当Xn=9/Xn.即Xn=3时,等号成立Xn=(X(n-1)+9/X(

已知数列Xn limXn=a 求证:lim(X1+X2+X3+.+Xn)/n=a

xn的极限为a则对于任意e大于0,存在N1,当n>N1时,都有lx-al

设Xn>0,且 lim(X(n+1)/Xn)=A 证明 limXn的n次根号=A

该题可以这样证明期间文字诸多表达不变LZ慢慢看所求证的式子用S表示每一项x(n+1)/xn用yn表示并且令x1=y1可以看出yn的极限为AS=lim(y1*y2*y3……y(n-1))^(1/n)=l

limxn=a lim(yn-xn)=0 则数列{yn} n趋于无穷

A收敛于a但c那样做不正确.再问:C哪儿不正确麻烦请详明再答:因为yn的极限还不知道是否存在所以这儿不能拆开来运算。

若极限limxn=0,{yn}发散,则数列{xnyn}

可能收敛,也可能发散.收敛的例子,xn=0,无论yn啥样,xnyn都收敛发散的例子,xn=1/n,yn=n^2再问:谢谢O(∩_∩)O再问:谢谢O(∩_∩)O