级数ln((n 1) n)的收敛性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:15:42
级数通项un=ln(n/(n+1))lim(n→无穷)un=lim(n→无穷)ln(n/(n+1))=lim(n→无穷)ln(1/(1+1/n))=0因为sn=ln(1/(n+1))所以S=lim(n
发散,与调和级数比较(用比较审敛法的极限形式).[1/n]/[1/(n+1)]的极限是1,因此这两个级数同敛散,而调和级数发散,所以这个级数发散.
再答:你的题目是本例的特例,收敛再问:嗯嗯
比值判别法limn->无穷u(n+1)/un=1/(n+1)!/1/n!=1/n+1=0所以收敛其实这个级数的值就是e
这个是收敛的,1/n^+a^<1/n²<1/n(n-1)=1/(n-1)-1/n,n≥2,所以0<∑1/n^+a^<1/(1+a^)+1-1/n,当n趋于无穷,有0<∑1/n^+a^<1/(
该级数发散,分析如图,
跟1/n的求和去比较吧.1/3+1/4+...1/n...发散,所以1/ln3+1/ln4...+1/ln(n).发散,因为后者每项都大于前者
发散啊,对于n>N设N>e-1,有ln(n+1)>1,所以ln(n+1)/n+1>1/n+1,而1/n+1的级数是发散的所以∑ln(n+1)/n+1发散部分和发散,必发散
利用定义∑ln[n/(n+1)]=∑[lnn-ln(n+1)]=(ln1-ln2)+(ln2-ln3)+(ln3-ln4)+···+[lnn-ln(n+1)]+···当n→+∞时,部分和Sn=(ln1
∵limn->∞时,lnn/n²~1/2n²∵1/n²收敛∴lnn/n²收敛
ln(1+n)/(n^2)和1/n^(3/2)比较[ln(1+n)/(n^2)]/[1/n^(3/2)]=ln(1+n)/(n^(1/2))ln(1+n)/(n^(1/2))求导得2(√n)/(1+n
(n*lnn)/2^n这个级数除了n=1时数项为0,其余的的各项都是正的.在这种情况下我们将∑(n*lnn)/2^n(n属于N)分解成:0+∑(n*lnn)/2^n(n是除1外的自然数).我们只需讨论
因为1/(ln(n)^n)开n次方=1/(ln(n))它的极限=0再问:他是要求讨论的,应该分情况啊再答:不需要,除非你字母搞错乱了。
收敛,用P判别法(也就是比较审敛法)可以有(lnn)/n^(4/3)*n^(7/6)=(lnn)/n^(1/6)极限是0所以原级数收敛其实lnn^εε→0+那(lnn)/n^(1/6)的极限为什么是0
判断∑an是否收敛,你这算的是an随n变化,有很多an虽然收敛,但是∑an却能趋于∞.比如∑(1/n),1/n减小的很快,但是∑(1/n)却是等于无穷的.
因为lim(n-->∞)ln(1+1/n)/(1/n)=1也就是这个级数与1/n等价所以是发散的或者根据对任意的nln(1+1/n)>1/n+1以及级数∑1/n+1发散来判断这个级数发散
由于级数∑lnn/√n不收敛,所以原级数不绝对收敛.当n≥8时,ln(n+1)/√(n+1)<lnn/√n,又因为lim(n→∞)lnn/√n=0,因此去掉原级数的前7项后,所得的级数是收敛的(根据莱
发散;因为:lim[1/ln^10n]/[1/n]=limn/[ln^10n]=limx/[ln^10x]=lim1/[(10ln^9x)*1/x]=limx/[(10ln^9x)]=……=+∞而∑1