若三棱锥p-abc的三条侧棱两两垂直,且长为a,b,c,则他的体积为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:06:59
三棱锥体积=1/6*PA*PB*PC=1/6PB*PC
三棱锥P-ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长:32+ 42+52=52所以球的直径是52,半径长R=522球的表面积S
三分之根号六a此题关键在于顶点在底面上的投影与底面得人点的连线长是底面高的三分之二
由题意画出正三棱锥的图形如图,三角形ABC的中心为E,连接PE,球的球心O,在PE上,连接OA,取PA的中点F连接OF,则PO=2=OA,PF=3,OF=1△PFO∽△PAE所以OFAE=POPA,1
/>正三角形的高是2*(√3/2)=√3底面的面积S=2*√3*(1/2)=√3所以,体积=S*PA/3=√3*3/3=√3
三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,所以底面面积为:3;三棱锥的体积为:13×3×3=3故答案为:3
设三棱锥P-ABC,AP⊥BP,AP⊥CP,BP⊥CP,作PH⊥平面ABC,垂足H,连结CH,与AB相交于D,连结AH与BC相交于E,则CP⊥平面PAB,且AB∈平面PAB,CP⊥AB,CH是CP在平
以PA,PB,PC分别为长,宽,高可作出一个长方体,所求三棱锥的体积是长方体体积的1/6,体积为4;三棱锥的外接球的直径是长方体的体对角线,所以半径为29的算术平方根的一半.
作点P在底面ABC的正投影H,因为是正三棱锥,所以H为正三角形ABC的中心,连AH并延长交BC于D,可知角ADH=60度,HD=三分之一AD=三分之二根号3,在直角三角形ADH中可得,正三棱锥的高为2
底面中心到边的距离=根号3/3则高=(根号3/3)*根号3=1体积=1/3*根号3*1=根号3/3
∵PA⊥平面ABC,PB=PC由射影定理得AB=AC=4∵PA⊥平面ABC∴PA⊥AC在Rt△PAC中,得PC=5则PB=BC=5取BC中点D,连AD在等腰△ABC中,底边上的高AD=√39/2∴V=
设垂心为G.则PG垂直平面ABC所以PG垂直AB,BC,AC连接AG,BG,CG因为G为三角形ABC垂心,所以AG垂直BC,BG垂直AC,CG垂直AB所以AB垂直平面PCG,BC垂直平面PAG,AC垂
解题思路:利用均值不等式计算。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/re
边长为1的正方体的对角线的一半.二分之跟号三再问:能给出过程吗而且答案是3分之根号3复制别人的答案没意思……再答:设P到平面ABC的距离为h,则∵三棱锥P-ABC中,PA,PB,PC两两垂直,PA=P
设BF=y在三角形PBF中cos
先求A到PBC的距离,D到PBC的距离等于它的一半.V=(1/3)*(1/2)*2*2*4=8/3三角形PBC的面积的三边为2根5、2根5、2根2P到BC上的高=根号(20-2)=3根2S=(1/2)
如图所示,三个侧面两两垂直,可看成正方体的一角,则AP⊥面PBC,而BC⊂平面PBC∴AP⊥BC而PH⊥面ABC,BC⊂面ABC∴PH⊥BC,又AP∩PH=P,∴BC⊥面APH,而AH⊂面APH∴AH
先画出一个三棱锥过P做BC边高PD过A做PD边高AH先求PBC底面对应的高AHPH=PA*1/2*√3/2=√3/4*aAH^2=PA^2-PH^2=a^2-3/16a^2=13/16a^2AH=√1
根据三条侧棱两两垂直得知三侧面都是直角三角形且三面互相垂直,所以我们利用体积值相等来求高.V=(2*3/2)*1/3=1根据勾股定理能求得平面ABC的三边长,再求得底边的面积,就能求高即P到平面ABC
对的,答案就是7/8.解释:这是一条考察几何概率的题目,V(三棱锥)=S(底面积)*h(高);由原题可知:V(S-ABC)=S(ABC)*H;然而“在正三棱锥内任取一点P,使得V(P-ABC)