若函数fx=ln(1 |x|)-1 1 x^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:29:32
记u=x+√v,v=x^2+1v'=2xu'=1+v'/(2√v)=1+2x/(2√v)=1+x/√v则f(x)=lnuf'(x)=u'/u=(1+x/√v)/u=(x+√v)/(u√v)=1/√v=
求导得:f'(x)=ln(e^x+1)+[xe^x/(e^x+1)]-x=ln(e^x+1)-x/(e^x+1)=[1/(e^x+1)][(e^x)ln(e^x+1)+ln(e^x+1)-ln(e^x
(1)f(x)=x²·ln|x|f'(x)=2xln|x|+x²·1/x=2xln|x|+x=x(2ln|x|+1)当x>e^(-1/2)时,f'(x)>0;当0
解析如下:f′(x)=x(1-a-ax)x+1,x∈(-1,+∞).依题意,令f'(2)=0,解得a=13.经检验,a=13时,符合题意.…(4分)①当a=0时,f′(x)=xx+1.故f(x)的单调
对函数求一次导,令其大于0,即1/(2-x)+a>0,a>1/(x-2)1/ax-2的最小值为-2,但取不到所以1/a
已知函数f(x)=ln(ax+1)+(1-x)/(1+x),x>=0,其中a>0,(1)求f(x)的单调区间(2)若f(x)的最小值为1求a的取值范围f′(x)=[a/(a+1)]-[2/(1+x)&
-10f(x)单调递增,所以f(x)的最小值=f(0)=1.0=f(0)=1f(x2-x1)=e^(x2-x1)-ln(x2-x1+1)>1,即e^(x2-x1)>1+ln(x2-x1+1),又x2-
f'(x)=1/(x-1)-k(x>1)当k≤0时,f'(x)>0,f(x)在(1,+∞)单调递增即f'(x)的增区间为(1,+∞)无减区间当k
1)因为√(x^2+1)>|x|,所以x+√(x^2+1)恒大于0所以定义域为R2)f(-x)=ln[-x+√(x^2+1)]=-ln1/[-x+√(x^2+1)]=-ln[√(x^2+1)+x]/[
(2)f(x)=x-(x+1)ln(x+1)f'(x)=1-ln(x+1)-1=-in(x+1)令f'(x)=0-ln(1+x)=0得x=0f’(x)为递减函数在(-1/2,0)f'(x)>0在(0,
(1) 等式化简后:f(2)=±(√19/2)+3
定义域为x>1,在定义域内,ln(x-1),及0.01x都是单调增函数,故f(x)也是单调增函数,最多只有一个零点.又f(2)=0.02>0f(1.5)=-ln2+0.015
因为函数为奇函数,因此f(0)=0,由于x<0时f(x)=ln[1/(1-x)],所以x>0时,f(x)=-f(-x)=-ln[1/(1+x)]=ln(1+x),图像如图
f'(x)=2(x+1)-2/(x+1)-2x-a令f'=0解出a=2x/x+1因为0
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
fx=ln(1+x)-ln(1-x)则f(x)的定义域即为1+x>01-x>0解得-11x>0综合定义域可知x的范围是(0,1)
定义域x>-1f'(x)=1/(x+1)+a由题意,f'(x)>=0对于任意x>-1恒成立a>=-1/(x+1)恒成立令g(x)=-1/(x+1)(x>-1)显然g(x)=0
y=3x-1再问:完整点?再答: