若函数fx=x的平方-mcosx m的平方 3m-8有唯一零点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:08:15
f'(x)=[2xe^x-x²e^x]/(e^x)²=(2x-x²)/(e^x)∴(-∞,0)单调递减,(0,2)单调递增;(2,+∞)单调递减∴极小值是f(0)=0极大
2(x+根号x平方+1)大于等于0即可再一步一步拆根式注意根式内大于等于0但是整个函数的真数必须大于0.奇偶性的话看f(x)与f(-x)的关系相加为零为奇函数相等为偶函数.其余情况为非奇非偶函数.单调
f(-x)=-x/(-x)²+1=-f(x)奇函数设x1大于x2,f(x1)-f(x2)=-x1x2(x1-x2)/(X1²+1)(x2²+1)<0减函数
/>设f(x)=ax²+bx+c,因为f(0)=0+0+c=1,所以f(x)=ax²+bx+1,所以f(x+1)-f(x)=a(x+1)²+b(x+1)+1-(ax
x0则有f(-x)=(-x)^2+三次根号下(-x)又f(x)为奇函数,所以f(-x)=-f(x)所以-f(x)=f(-x)=(-x)^2+三次根号下(-x)即f(x)=-x^2-三次根号下x所以有f
cos(x+π/4)=√2/2(cosx-sinx)令cosx-sinx=t-√2
f(x)=x^3+2x^2+x>=ax^2=>x^3+(2-a)x^2+x>=0对于R+恒成立因为x>0,所以只要g(x)=x^2+(2-a)x+1>=0对于R+恒成立抛物线g(x)当x>0的时候g(
fx=4cos²x-2+1-cos²x-4cosx=3cos²x-4cosx-1令t=cosx则-1≤t≤1即求[3t²-4t-1]的最值
f(x)+2f(1/x)=3x……①令x=1/x得f(1/x)+2f(x)=3/x……②①②联立解得f(x)=2/x-x∴f(2)=2/2-2=1-2=-1因此f(2)的值为-1.再问:联立那儿我有点
f(x)=x^2/(e^x)因为对于任意x,e^x>0,所以f(x)的定义域为R===>f'(x)=[2x*e^(x)-x^2*e^x]/(e^x)^2===>f'(x)=
a=0,f(x)=e^x-1-xf'(x)=e^x-1=0e^x=1x=0x>0时f'(x)>0,x
1、g(x)=x+e^2/x>=2e,在x=e时取等号.(x>0)故m>=2e时,函数有零点.2、直接画图,g(x)是对勾函数,在x=e时,有最小值,f(x)是以x=e为对称轴的,开口向下的抛物线,这
希望对你有所帮助 再问:请问当a属于(0,e)是怎样证明e平方x的平方-2分之5x大于(x+1)lnx呢?再答:我刚才还以为你 就问2问呢 嘿嘿 加油~~若可以
f(x)=2x^2-(k^2+k+1)x+5,gx=k^2x-kp(x)=f(x)+g(x)=2x^2-(k+1)x+5-kp(x)在(1,4)上有零点即存在x∈(1,4),使得2x^2-(k+1)x
cx=|fx|-gx=|x^2-1|-a|x-1|=0当x>1,a>2当0≤x
f(x)=g(x)+h(x)f(-x)=g(-x)+h(-x)=-g(x)+h(x)两式相减得:g(x)=[f(x)-f(-x)]/2故有:g(x)=(a+1)xg(x)在x
一看是偶函数所以讨论x>0情况就可以了(0,1)递减(1,无穷)递增因为是偶函数(无穷,-1)递减(-1,0)递增
f(x)=mcos²x+√3msinxcosx+n=m/2(1+cos2x)+√3/2msin2x+n=m(√3/2sin2x+1/2cos2x)+m/2+n=msin(2x+π/6)+m/
解f(x)=-x²+4x+a=-(x²-4x)+a=-(x²-4x+4)+4+a=-(x-2)²+4+a对称轴为x=2,开口向下∴在x∈[0.1]上,f(x)是