若矩阵AB=BA,证明A B有共同特征向量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:08:08
因为AB=E所以|AB|=|A||B|=|E|=1≠0那么|A|≠0所以A可逆在AB=E两边分别左乘A^(-1),右乘AA^(-1)ABA=A^(-1)EA即BA=E再问:其实这是在定义AB=BA=E
证明:由A+2B=AB得(A-2E)(B-E)=2E所以B-E可逆,且(B-E)^-1=(1/2)(A-2E).所以(B-E)(A-2E)=2E整理有BA=A+2B再由已知得AB=BA.
因为AB=BA所以(AB)^T=B^TA^T=BA=AB所以AB是对称矩阵.由A,B正定,存在可逆矩阵P,Q使A=P^TP,B=Q^TQ.故AB=P^TPQ^TQ而QABQ^-1=QP^TPQ^T=(
同样B和A也能做乘法,所以B的列数=A的行数.设A是m*n矩阵,则B一定是n*m矩阵.那么AB就是m*m矩阵,BA就是n*n矩阵.由AB=BA可知m=n.所以A和B是同阶方阵.
知识点:R(AB)
只要验证(E+BA)*{E-B*[(E+AB)-1]*A}与{E-B*[(E+AB)-1]*A}*(E+BA)都是单位阵E就行了.(E+BA)*{E-B*[(E+AB)-1]*A}=(E+BA)-(E
若AB=BA,AC=CA则A(B+C)=AB+AC=BA+CA=(B+C)A则A(BC)=(AB)C=(BA)C=B(AC)=B(CA)=(BC)A再问:我采纳了!再问:我又发了2道题!!再问:矩阵题
一个矩阵A是正规阵的充要条件是存在矩阵X,使得X*AX是对角阵.其中X*是X的共轭转置.于是存在矩阵X,Y使得X*AX=K,Y*BY=J,其中K,J是对角阵,且可记K=diag(K1,K2,...,K
个人认为那个“问题补充”里的条件用不到,就可以证明了.证:由于A和B能做乘法,所以A的列数=B的行数,否则矩阵乘法无法进行.同样B和A也能做乘法,所以B的列数=A的行数.设A是m*n矩阵,则B一定是n
证明其中一个就可以了若AB=E则|A||B|=E所以|A|≠0,|B|≠0故A,B可逆且由AB=E,两边左端A^-1得B=A^-1两边右乘B^-1得A=B^-1
再问:谢谢啊!!网上的我都看不懂,看懂了你教的了。
其实这是个充分必要的由已知,A'=A,B'=B所以有AB是对称矩阵(AB)'=ABB'A'=ABBA=AB有问题请消息我或追问
实对称矩阵A,B,分别存在实对称正定矩阵C,D,使得A=C^2,B=D^2则有C'(AB)C=C^-1(CCDD)C=CDDC=C'D'DC=(DC)'DC=E'EE=DC可逆,所以C'(AB)C正定
首先不妨把语言转化为线性变换:取定一组基,以A,B为矩阵的线性变换仍记为A,B.在复数域上,特征多项式一定有解,而每一特征值都有相应的特征向量.任取A的一个特征值λ,考虑A的属于λ的特征子空间W(即A
这个很简单就是考定义(AB)的n次方=AB·AB·AB········AB(共乘以n次)∵AB=BA∴(AB)的n次方=ABABAB········AB=A·A·A·A······B·B·B·B·B·
A(B+C)=AB+AC=BA+CA=(B+C)A,A(BC)=﹙AB﹚C=﹙BA﹚C=B﹙AC﹚=B﹙CA﹚=(BC)A.
AB是对称矩阵<=>(AB)'=AB<=>B'A'=AB<=>BA=AB即AB可交换再问:AB是反对称矩阵呢!!!
A=diag{a1,a2,……an}B=diag{b1,b2,……bn}AB=diag{a1b1,a2b2,……anbn}BA=diag{b1a1,b2a2,……bnan}∵akbk=bkak(数的乘