若矩阵A和B都是n阶对称阵,证明AB是对称阵的充要条件
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:52:30
由已知A^T=A,B^T=B所以(A+B)^T=A^T+B^T=A+B(A-2B)^T=A^T-2B^T=A-2B所以A+B,A-2B是对称矩阵再问:可以变成图片的方式吗,写在纸上?再答:^T是转置记
证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#
a[i][j]=a[j][i]b[i][j]=b[j][i]a+b=c则c[i][j]=a[i][j]+b[i][j]=a[j][i]+b[j][i]=c[j][i]所以c是对称矩阵,也就是a+b是对
AB是对称矩阵(AB)'=ABB'A'=AB你的前提条件不足,A,B应该是对称矩阵,这样就有BA=AB
A为n阶实正定对称矩阵,==>A=PP^T(存在P可逆)B为n阶反实对称矩阵==》P^{-1}BP^{-1}^T为n阶反实对称矩阵,==》P^{-1}BP^{-1}^T的特征值都是实部为0的复数,==
亲爱的楼主:【正解】这个(D)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.祝您步步高升,新年快乐!记得点击采纳为满意答案哦,谢谢您的支持!再问:��л���
条件表明A'=AB'=BA'B'表示转置故(A+B)'=A'+B'=A+B(A-2B)=A'-2B'=A-2B两式表明A+B,A-2B也都是对称矩阵
充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB
经济数学团队为你解答,有不清楚请追问.请及时评价.
B正定,存在可逆阵D,使得D’BD=E,记M=D‘AD是对称阵,故存在正交阵Q,使得Q'MQ是对角阵,令C=DQ,则C'AC=Q'D'ADQ=Q'MQ是对角阵,C'BC=Q'D'BDQ=Q'EQ=E是
证明:[(E+AB)^-1A]^T^T表示转置,楼主懂得,证明矩阵对称的思路:就是证明转置矩阵是否等于矩阵本身)另外,题中:A+B都是n阶对称矩阵.不对吧,应该是A和B都是n阶对称矩阵[(E+AB)^
不一定合同的充是相同的正负惯性指数,相加以后的正负管性指数不确定再问:能给出证明吗?再答:不好证,看老刘的例子吧
由于A与B有相同的特征多项式,所以A与B有相同的特征根,不妨设λ1,λ2.λn为A与B的特征根,由于A与B均为实对称矩阵,则存在正交矩阵X和Y,使X^(-1)AX=【λ1λ2·····λn】(此为矩阵
证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B
再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力
这个用双向证明.证明:由已知,A'=A,B'=B所以AB是对称矩阵(AB)'=ABB'A'=ABBA=ABA,B可交换.
由已知,A'=A,B'=-B.所以(3A-B)^2'=(3A-B)'(3A-B)'=(3A+B)(3A+B)呵呵结论不对!
1.因为若A与B都是n阶正交矩阵所以AA'=A'A=E,BB'=B'B=E所以(AB)'(AB)=B'A'AB=B'B=E所以AB是正交矩阵.2.因为(A+A')'=A'+(A')'=A'+A=A+A
若A,B都是n阶对称矩阵,则有A的转置=A,B的转置=B.(2A--3B)的转置=2*A的转置-3*B的转置=2A--3B∴2A-3B也是对称矩阵.(AB--BA)的转置=(AB)的转置--(BA)的
若A,B都是n阶对称矩阵,则有A的转置=A,B的转置=B.(2A--3B)的转置=2*A的转置-3*B的转置=2A--3B∴2A-3B也是对称矩阵.(AB--BA)的转置=(AB)的转置--(BA)的