行列式不等于零满秩?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:09:19
行列式不等于零满秩?
如果矩阵A的行列式乘以矩阵B的行列式不等于0,能不能说明A和B的行列式都不等于零?

|A|,|B|是两个数,两个数的积不为0,这两个数当然都不为0所以|A|,|B|都不为0

n阶矩阵A行列式为0,存在一个代数余子式子不等于0

行列式为0故r(A)一个代数余子式非0,故所在的n-1行线性无关,r(A)≥n-1.即有r(A)=n-1.再问:不是这样,我刚才知道,是利用k阶子式的知识再答:你是说下面这个结论?方阵A的秩=最大的k

逆矩阵的行列式等不等于行列式的倒数?为什么?

等于.因为AB=BA=E(单位阵),B是A的逆矩阵.所以|AB|=|BA|=1.当A是方阵时,|AB|=|A||B|,|BA|=|B||A|,有|B|=1/|A|.

怎么证明一个矩阵可逆的充要条件是其行列式不等于0

因为|AB|=|A||B|啊,书上的性质,同济五版第四十页.

齐次线性方程组只有零解,能说明该系数行列式D不等于0吗?

可以的只要系数组成的矩阵是一个方阵,那么系数行列式的值不为0

如果线性方程组的系数行列式不等于零,则这个线性方程组一定有解,且解唯一.

如果一个线性方程组无解或者存在不唯一的解,则这个线性方程组的线性行列式等于零._____A∩B=A∪B既后一个的否命题原型.

老师 矩阵的行列式等于和不等于0能代表什么?

这个成立是充要条件|A|=0的充分必要条件A不可逆(又称奇异)A的列(行)向量组线性相关R(A)

行列式不等于0可以怎么证明?

若a1,a2,...,ak线性无关,则对任意的x1,x2,...,xk不全为0,有c=x1a1+x2a2+...+xkak不为0,于是(cc)>0,打开可以看出就是x^TGx>0,其中G是Gram矩阵

矩阵满秩的条件是否是该方阵的行列式不等于0?

如果是方阵,那么行列式不等于0是满秩的.对于不管是不是方阵的情况,当写成行向量或列向量时,如果行(列)向量线性无关,那么满秩.当作初等行列变换后能化为单位阵,那么也满秩.还有许多条件的,可以看书呀

线性无关等价于gram行列式不等于0?怎么证明?

若a1,a2,...,ak线性无关,则对任意的x1,x2,...,xk不全为0,有c=x1a1+x2a2+...+xkak不为0,于是(cc)>0,打开可以看出就是x^TGx>0,其中G是Gram矩阵

线性代数,如果已知A不等于E,能推断出A-E的行列式不等于零吗?

显然不能例如把E的一个1变成0,把它记做A,E-A行列式为0

矩阵满秩满秩矩阵的行列式一定不等于零吗?

你仔细去看一下,矩阵的秩是怎样定义的就明白了.矩阵A中如果存在一个r阶子式不等于0,而所有的r+1阶子式(如果存在的话)全等于0,则规定A的秩R(A)=r.n阶方阵A满秩,就是A的秩为n,则A有一个n

证明题:当b不等于0时,左边三阶行列式等于右边

证明:左边=|a11*b*b^(-1)a12*b^(-1)a13*b^(-2)|a21*ba22a23*b(-1)a31*b^2a32*ba33*b*b^(-1)=b*b*b^(-1)*b^(-1)*

为什么行列式不等于零 矩阵可逆?

求逆公式是什么?1/{A}*{A}的伴随矩阵,你觉得什么东西分母可以等于0的呢?

设n阶行列式|aij|不等于零,则线性方程组

/>设A为系数矩阵增广矩阵B=(A,b)=a11a12……a1n-1a1na21a22……a2an-1a2n……an1an2……annn-1ann因为|B|=|aij|不等于零所以r(B)=n所以A列

线性代数,行列式等于零或不等于零,跟线性相关和线性无关有什么关系

齐次线性方程AX=0(1)可以看做关于A(m*n)的列向量a1,a2,……,an的方程ajxj=0(j=1,2,……,n)(2)列向量aj=(a1j,a2j,……,amj)^T(1)和(2)是同解方程

为什么证明线性无关只要其对应的行列式不等于0

不等于0,说明齐次线性方程组只有零解,说明只有全为零的数才能使得他们的线性组合等于0,因此线性无关

已知3阶方阵A的行列式|A|=a不等于0,则行列式|-2A|=

|-2A|=(-2)^3*a=-8a再问:矩阵A=211160为()定矩阵。103