计算曲线积分i=∫(2xy y^2-8)dx (x^2 2xy)dy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:07:41
再问:∫AB+∫DA是什么意思呢再答:被积函数在AB,0A直线上积分。被积函数省写了。
令P=x^2-y,Q=-x-(cosy)^2∵αP/αy=αQ/αx=-1∴由格林定理知,此曲线积分与路径无关,只与始点和终点有关于是,计算此积分取路径为:y=0,0≤x≤1故I=∫x^2dx=1/3
简单的很,因为是曲线积分,所以可以将曲线方程带入化简积分函数,带入后可以把积分函数中3x^2+4y^2一项消去,得到了∫L(12+2xy)ds吧?因为由曲线方程同时乘以12得到的积分函数中的一项……对
用公式编辑器比较麻烦,我就口述一下:先化为一次积分,再将积分写成π∫-∫y的两部分接着令y^2=t,将含π的那部分积分变量代换得到∫1,再令u=π-t,对∫1再次变量代换,得到∫2,联立∫1和∫2求到
设C是由曲线y³=x²与直线y=x连接起来的正向闭曲线,计算∮x²ydx+y²dy的曲线积分C:y=x^(2/3),y=x;区域D:由曲线C所围的区域;P=x&
C^e^2√x2全是指数?再问:是的,可以QQ吗?再答:1073732646再问:我将题目图片发到你邮箱了,我在考场中,没有QQ,谢了再答:第一题B再问:谢了,我已经提交答卷了,不用做了,分给你吧
应用格林公式,第一个积分号的上下限为0和π,第二个积分号为0到2cos#,答案为1.5π再问:为什么是0到2cos#重点的过程
因为所给曲线为关于x轴对称的半圆吧?我们可以用对称性,直接研究第一象限中的曲线部分吧?再乘以2不完了吗?因此绝对值可以去掉了吧?用极坐标代换简单的……分别计算简单,没有什么捷径可走的,分成两个曲线计算
F(x,y)=x/y+c的偏微分就是dx/y-x/y2dy;所以求积分就是求F(-1,2)-F(1,1)=(-1/2+c)-(1/1+c)=-3/2
Analysis-Calculus-Integrate,自动生成一个worksheet和一个graph,最大值就是积分面积.但这个面积是和x轴之间的面积,也可先基线校正Tools-Baseline,可
利用格林公式,因为格林公式要求一个封闭的区域,所以先补上:L1:y=1,x从1到0;L2:x=0,y从1到0;使得变成一个正定向的区域,然后设在L上的曲线积分为S,在L1和L2上的曲线积分分别为S1和
用格林公式∫s2dxdy2*4=8
答案:2.过程不详述了.这个积分是跟路径无关的,因为原函数是一个函数(3xxyy-xyyy)的全微分.在这种情况下,积分值等于原函数在起始点值的差.
由题意,P=x4+4xyk,Q=6xk-1y2-5y4要使曲线积分与积分路径无关,则必有∂P∂y=∂Q∂x即4kxyk-1=6(k-1)xk-2y2∴4k=6(k−1)1=k−2k−1=2∴k=3
由题意,取点D(2,1),连接线段BD和DA补充,得I=AO+0B+BD+DA(12xy+ey)dx−(cosy−xey)dy-BD+DA(12xy+ey)dx−(cosy−xey)dy=∫∫D(−1
看高等数学!
y²=x==>y=±√x∫_L(xy)dx=∫_(点A到原点)(xy)dx+∫_(原点到点B)(xy)dx=∫(1~0)x(-√x)dx+∫(0~1)x(√x)dx=∫(0~1)(x√x+x
∫(x^2-y^2)dx=∫0~2(x^2-x^4)dx=-56\15如果是∫(x^2-y^2)dL=∫0~2(x^2-x^4)√(1+4x^2)dx这里的区别就是dx和dl,做题目的时候要看清楚呀.
P(x)=e^x-2e^xcosy,Q(x)=2e^xsiny∂P/∂y=2e^xsiny=∂Q/∂x因此积分与路径无关,选择A到O的线段y=0来做积分