设A,B为n阶矩阵,2A-B-AB=I,A^2=A,其中I为n阶单位矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:30:23
证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#
A^2=A,B^2=B,(A+B)^2=(A+B)==>AB+BA=0==>0=A^2B+ABA=AB+ABA,0=ABA+BA^2=ABA+BA===>ABA=-AB=-BA==>AB=BA
终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是
这是行列式的性质行列式等于其转置行列式即有|B^T|=|B|.所以行列式对行成立的性质对列也成立!
利用行列式性质:|AB|=|A||B|,及|A‘|=|A|.|(A-B)(A+B)|=|(A-B)||(A+B)|=|(A-B)'|*|(A+B)|=|(A'-B')||(A+B)|=|(A'-B')
设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)
因为A、B均为n阶可逆矩阵所以(A*)*=(|A|A^(-1))*=|A|^n-2(A^(-1))*=|A|^n-1(A*)^(-1)=|A|^n-1(|A|A^(-1))^(-1)=|A|^n-1A
首先,你应该知道下面几条:1).一个矩阵为对称矩阵,则此矩阵等于他的转置矩阵.因此,由条件A为对称矩阵,可知A=A^T2).要证明B^TAB是对称矩阵,就是要证明此矩阵等于他的转置矩阵,即证明B^TA
利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.
(A+B)(A-B)=A^2-AB+BA-B^2注意矩阵乘法没有交换律.AB不一定等于BA,则BA-AB不一定等于0.所以(A+B)(A-B)=A^2-B^2不一定成立.
(D)正确.联立方程组Ax=0Bx=0则系数矩阵的秩r(A;B)
|2A^*-B^(-1)|=?B^-1前不应该是加减连接,否则无法计算.所以估计原题是|2A^*B^(-1)||2A^*B^(-1)|=2^n|A*||B^-1|=2^n|A|^(n-1)|B|^-1
利用等式AA*=A*A=|A|E.A[2A^(-1)B*+A*B^(-1)]B=2AA^(-1)B*B+AA*B^(-1)B=2|B|E+|A|E=2(|A|+|B|)E=2E.等式两边取行列式得|A
你做的对!也可用A*=|A|A^-1丨2A^(-1)B*+A*B^(-1)丨=|2|B|A^-1B^-1+|A|A^-1B^-1丨=|-A^-1B^-1|=(-1)^n(-1/6).A[2A^(-1)
不一定,E+(-E)=O.再问:哈,谢谢!
因为A*A=AA*=IAIE,所以A*=A^(-1)IAI.A^(-1)表示A的逆,IAI表示A的行列式.(AB)*=(AB)^(-1)IABI=B^(-1)A^(-1)IABI=B^(-1)IBIA
A、B相似,说明存在可逆的P,A=PBP逆B正交,说明B'=B逆,B'表示转置所以|A|²=|A²|=|AA|=|PB(P逆P)BP逆|=|P||P逆||B||B|=|P|*1/|
只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������صģ�B���
(1)对于选项A.若λE-A=λE-B,则:A=B,但题目仅仅是A与B相似,并不能推出A=B,故A错误;(2)对于选项B.相似的矩阵具有相同的特征值,这个是相似矩阵的性质,这是由它们的特征多项式相同决
PQ=A+aa^Ta+ba-a^TA*A+|A|a^T-a^TA*a+|A|b=A+aa^Ta+ba-|A|a^T+|A|a^T-a^TA*a+|A|b=A+aa^T(b+1)a0-a^TA*a+|A