设A,B均为四阶矩阵,A=2,B=3,把A,B按列分块为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:54:22
设A,B均为四阶矩阵,A=2,B=3,把A,B按列分块为
设A,B均为n阶矩阵,|A|=2,|B|=-3,则|2A*B^T|=?

这是行列式的性质行列式等于其转置行列式即有|B^T|=|B|.所以行列式对行成立的性质对列也成立!

设 为四阶方阵A的伴随矩阵,且|A*| =8,则|2(A^2)^-1|

因为|A*|=|A|^(4-1)=|A|^3=8所以|A|=2所以|2(A^2)^-1|=2^4/|A^2|=2^4/2^2=4

设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵

参考一下再问:有没有更简单的方法?我们好像没学到过那条推论啊。。。QAQ再答:行列式拉普拉斯展开式有没有学过?

设A、B均为n阶可逆矩阵,证明(A*)*= |A|^n-2·A

因为A、B均为n阶可逆矩阵所以(A*)*=(|A|A^(-1))*=|A|^n-2(A^(-1))*=|A|^n-1(A*)^(-1)=|A|^n-1(|A|A^(-1))^(-1)=|A|^n-1A

设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵

利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.

设A为四阶矩阵,且|A|=-3,则|2A^*+4A^-1|=

再问:额哥们选择题没这个答案啊再答:哦,不好意思,倒数第二行把2/3写成4/3了,最后答案是-16/3,不错的。

设A,B为n阶矩阵,当A与B均为上三角阵时,(A+B)(A-B)=A^2-B^2不一定成立

(A+B)(A-B)=A^2-AB+BA-B^2注意矩阵乘法没有交换律.AB不一定等于BA,则BA-AB不一定等于0.所以(A+B)(A-B)=A^2-B^2不一定成立.

设A,B均为n阶矩阵,r(A)

(D)正确.联立方程组Ax=0Bx=0则系数矩阵的秩r(A;B)

设A,B均为n阶矩阵,|A|=2,|B|=-3,则|2A^* - B^(-1)|=?A^* 为伴随,B^(-1)为逆

|2A^*-B^(-1)|=?B^-1前不应该是加减连接,否则无法计算.所以估计原题是|2A^*B^(-1)||2A^*B^(-1)|=2^n|A*||B^-1|=2^n|A|^(n-1)|B|^-1

n阶矩阵计算设A、B均为n阶矩阵,且丨A丨=3,丨B丨=-2,A*B*分别为AB的伴随矩阵,则丨2A^(-1)B*+A*

利用等式AA*=A*A=|A|E.A[2A^(-1)B*+A*B^(-1)]B=2AA^(-1)B*B+AA*B^(-1)B=2|B|E+|A|E=2(|A|+|B|)E=2E.等式两边取行列式得|A

设A,B均为n阶矩阵,且AB=A+B,证明A,B可交换

证明:由AB=A+B得(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且E=(B-E)(A-E)=BA-B-A+E所以BA=A+B=AB.

n阶段矩阵计算设A、B均为n阶矩阵,且丨A丨=3,丨B丨=-2,A*B*分别为AB的伴随矩阵,则丨2A^(-1)B*+A

你做的对!也可用A*=|A|A^-1丨2A^(-1)B*+A*B^(-1)丨=|2|B|A^-1B^-1+|A|A^-1B^-1丨=|-A^-1B^-1|=(-1)^n(-1/6).A[2A^(-1)

设A,B均为n阶可逆矩阵,求证:(AB)^*=B*A*

证明:因为A,B可逆,故A^-1,B^-1存在,AB可逆,且有A*=|A|A^-1,B*=|B|B^-1.故(AB)*=|AB|(AB)^-1=|A||B|B^-1A^-1=(|B|B^-1)(|A|

设a.b均为n阶(n≥2)可逆矩阵,证明(AB)*=A*B*

因为A*A=AA*=IAIE,所以A*=A^(-1)IAI.A^(-1)表示A的逆,IAI表示A的行列式.(AB)*=(AB)^(-1)IABI=B^(-1)A^(-1)IABI=B^(-1)IBIA

设A,B均为三阶矩阵,E是三阶单位矩阵.已知AB=2A+B,B=202040202

由:AB=2A+B,知:AB-B=2A-2E+2E,即:(A-E)B-2(A-E)=2E,也就是:(A-E)(B-2E)=2E,∴(A−E)•12(B−2E)=E,于是:(A-E)-1═12(B−2E

设A,B均为n阶矩阵,且AB=BA求证r(A+B)

这个比较麻烦,要借助向量空间的维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A,B均为n阶矩阵,且AB=BA,证r(A+B)

不是这个稍等再问:额,不是这道题啊再答:这个要借助空间维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A,B为三阶矩阵,| A| =3,| B| =-2 ,则| -2 A*T B*-1 |

看不明白你的记号A*T是A的转置A^T?B*-1是B的逆B^-1?|-2A*TB*-1|=(-2)^3|A^TB^-1|=-8|A||B|^-1=-8*3*(-1/2)=12.|A^T|=|A||kA

A,B均为n阶矩阵,B B为正交矩阵,则|A|^2=

A、B相似,说明存在可逆的P,A=PBP逆B正交,说明B'=B逆,B'表示转置所以|A|²=|A²|=|AA|=|PB(P逆P)BP逆|=|P||P逆||B||B|=|P|*1/|

设A为四阶矩阵,且|A|=3,求A的秩?

秩为四啊[A]不等于零,就是满秩四阶,就是四