设A2-AB=E,E为单位矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:13:45
直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.
因为:A2=A,所以:A(A-E)=0,则:r(A)+r(A-E)≤n,又因为:r(A)+r(A-E)=r(A)+r(E-A)≥r(A+E-A)=r(E)=n,所以:r(A)+r(A-E)=n,则:r
A+B=AB,即:AB-A-B+E=E(A-E)(B-E)=E所以A-E可逆,它的逆就是B-E
只要验证(E+BA)*{E-B*[(E+AB)-1]*A}与{E-B*[(E+AB)-1]*A}*(E+BA)都是单位阵E就行了.(E+BA)*{E-B*[(E+AB)-1]*A}=(E+BA)-(E
知识点:1.若AB=0,则r(A)+r(B)
(E-AB)A=A-ABA=A(E-BA)=>A=(E-AB)^(-1)A(E-BA)E=E-BA+BA=E-BA+B(E-AB)^(-1)A(E-BA)=(E+B(E-AB)^(-1)A)(E-BA
分三步:1.因为a为n维单位列向量,所以有a'a=1(记a'=aT)2.A'A=(E-2aa')(E-2aa')=E-4aa'+4aa'aa'=E-4aa'+4aa'=E3.||AB||=√(AB)'
按分块矩阵的乘法A^-1[A,E]=[A^-1A,A^-1E]=[E,A^-1].(*)教材中有这样的结论:n阶方阵A可逆的充分必要条件是A可以表示成有限个初等矩阵的乘积.当A可逆时,其逆矩阵A^-1
由:AB=2A+B,知:AB-B=2A-2E+2E,即:(A-E)B-2(A-E)=2E,也就是:(A-E)(B-2E)=2E,∴(A−E)•12(B−2E)=E,于是:(A-E)-1═12(B−2E
因为[(P^2)]^(-1)[PAP^(-1)]P^2=P^(-1)AP所以PAP^(-1)与P^(-1)AP相似故它们有相同的迹(即对角线元素之和)所以a1+a2+.+an=tr(PAP^(-1)-
AB+B=A(A+E)B=A+E-E(A+E)-(A+E)B=E(A+E)(E-B)=E所以A+E是可逆矩阵(A+E)(E-B)=(E-B)(A+E)=EA-AB+E-B=A+E-BA-BAB=BA
由A^2+A-4E=0,所以(A-E)(A+2E)=2E即(A-E)(A/2+E)=E,由逆矩阵的定义可以知道,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E.则我们称B是A的逆矩阵,显然(
首先A^2-5A+6E=E,而A^2-5A+6E可分解为(A-2E)x(A-3E),所以(A-2E)^(-1)=A-3E.
AB=A+BAB-A=BA(B-E)=B1AB=A+BAB-B=A(A-E)B=A22式左乘1式得(A-E)BA(B-E)=AB当且仅当A与B可交换时,即AB=BA时得(A-E)AB(B-E)=AB(
∵A=E-αTα,B=E+2αTα,∴AB=(E-αTα)(E+2αTα)=E+2αTα-αTα-2αTααTα,而:ααT=(12,0,…,0,12)120…012=12,∴AB=E+2αTα-αT
证明:∵A2=E∴0=(A-E)(A+E)∴0=r((A+E)(A-E))≥r(A+E)+r(A-E)-3∴r(A+E)+r(A-E)≤3而 r(A+E)+r(A-E)=r(A+E)+r(E
A^2-AB=EA(A-B)=EA-B=A^(-1)所以B=A-A^(-1)下略
稍等.再答:(A,E)=1-23-410001110101203001用初等行变换化为1001/72/7-6/75/701010/7-1/73/71/7001-3/71/74/7-1/7所以B=2/7