设ABC均为n阶矩阵 且ABC=I
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:05:57
A^(-1)=A^T|A^(-1)B^T|=|A^TB^T|=|(BA)^T|=|BA|=-1
你的题目实在是看不懂,不好意思什么是“A平方=A条件B平方=E”
ABC=EB=A^(-1)C^(-1)BT(CA)T=[CAB]T=[CAA^(-1)C^(-1)]T=E
用性质,答案是-n.
利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.
OK 这个有图片 请点击看大图
4正确.ABC=E根据结合律,得A(BC)=E等式两边取行列式,得|ABC|=|E|=1因为|ABC|=|A(BC)|=|A|*|BC|=1所以|A|!=0所以A可逆.等式两边左乘A逆,右乘A,得A逆
证明:由AB=A+B得(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且E=(B-E)(A-E)=BA-B-A+E所以BA=A+B=AB.
这个比较麻烦,要借助向量空间的维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3
不是这个稍等再问:额,不是这道题啊再答:这个要借助空间维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3
我来分析一下:|AB|≠0,即AB可逆,(把AB做为整体)这样R(ABC)=R(C)或R(CAB)=R(C)其他的都不确定 见公式里的第四条
首先证明任取n维列向量x≠0,Bx≠0因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.这样因为A正定
再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力
证明:显然,Ax=0的解是CAx=0的解由已知r(A)=r(CA)所以Ax=0与CAx=0同解.又显然ABx=0的解是CABx=0的解反之.设x1是CABx=0的解则CABx1=0所以Bx1是CAx=
(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵
根据逆矩阵的性质AB=I则有BA=I.已知ABC=I所以A(BC)=I,所以(BC)A=I.故(D)正确再问:貌似我书上的单位矩阵都是E莫非这里的单位矩阵是I?再答:是单位矩阵一般有两种记法,E和I.
矩阵的乘法不满足交换律所以AB-CA和(B-C)A一般不相等
1)由AB=0,得R(A)+R(B)《r.又R(B)=r,故R(A)《0.显然R(A)》0.故R(A)=0既A=02)如果AB=B,则AB-B=0.即(A-E)B=0,R(B)+R(A-E)《r.又R
不对.比如B=0;c只是和A相关的为0就不行.AB=AC可变形为A(B-C)=0,即若A不为0,问是否存在D时AD=0?肯定存在,比如A={(1,0)',(0,0)'}D={(0,0)',(0,1)'
证明:分两步(1)ABX=0与BX=0同解显然,BX=0的解都是ABX=0的解所以BX=0的基础解系可由ABX=0的基础解系线性表示.由已知r(B)=r(AB)所以两个基础解系所含向量个数相同故两个基