设ABC均为n阶矩阵 且ABC=I

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:05:57
设ABC均为n阶矩阵 且ABC=I
设A、B均为n阶正交矩阵,且|AB|=-1,则|A^(-1)B^T|=?

A^(-1)=A^T|A^(-1)B^T|=|A^TB^T|=|(BA)^T|=|BA|=-1

ABC 均为 N阶方阵且 2E=B+E(E是单位矩阵 证明A平方=A条件B平方=E

你的题目实在是看不懂,不好意思什么是“A平方=A条件B平方=E”

线代题:设A B C均为n阶矩阵 且ABC=E 则B的转置乘(CA)的转置等于?

ABC=EB=A^(-1)C^(-1)BT(CA)T=[CAB]T=[CAA^(-1)C^(-1)]T=E

设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵

利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.

线型代数(理)设n阶实方阵A,B,C满足关系式ABC=E,其中E为n阶单位矩阵,

4正确.ABC=E根据结合律,得A(BC)=E等式两边取行列式,得|ABC|=|E|=1因为|ABC|=|A(BC)|=|A|*|BC|=1所以|A|!=0所以A可逆.等式两边左乘A逆,右乘A,得A逆

设A,B均为n阶矩阵,且AB=A+B,证明A,B可交换

证明:由AB=A+B得(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且E=(B-E)(A-E)=BA-B-A+E所以BA=A+B=AB.

设A,B均为n阶矩阵,且AB=BA求证r(A+B)

这个比较麻烦,要借助向量空间的维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A,B均为n阶矩阵,且AB=BA,证r(A+B)

不是这个稍等再问:额,不是这道题啊再答:这个要借助空间维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

线性代数求矩阵的秩设ABC为三个N阶矩阵,且|AB|不等于0,判断 结论R(ABC)=?R(A) ,R(ABC)=?R(

我来分析一下:|AB|≠0,即AB可逆,(把AB做为整体)这样R(ABC)=R(C)或R(CAB)=R(C)其他的都不确定 见公式里的第四条

设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵

首先证明任取n维列向量x≠0,Bx≠0因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.这样因为A正定

设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵

再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力

设ABC分别为m*n,n*s,s*m矩阵,且r(CA)=r(A),证明r(CAB)=r(AB)

证明:显然,Ax=0的解是CAx=0的解由已知r(A)=r(CA)所以Ax=0与CAx=0同解.又显然ABx=0的解是CABx=0的解反之.设x1是CABx=0的解则CABx1=0所以Bx1是CAx=

设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵

(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵

设A,B,C均为n阶方阵,且ABC=I,则( )

根据逆矩阵的性质AB=I则有BA=I.已知ABC=I所以A(BC)=I,所以(BC)A=I.故(D)正确再问:貌似我书上的单位矩阵都是E莫非这里的单位矩阵是I?再答:是单位矩阵一般有两种记法,E和I.

ABC均为N阶矩阵.AB-CA 和 (B-C)A 是否相等?

矩阵的乘法不满足交换律所以AB-CA和(B-C)A一般不相等

设A为r*r阶矩阵,B为r*n阶矩阵且R(B)=r,证明:

1)由AB=0,得R(A)+R(B)《r.又R(B)=r,故R(A)《0.显然R(A)》0.故R(A)=0既A=02)如果AB=B,则AB-B=0.即(A-E)B=0,R(B)+R(A-E)《r.又R

设ABC为同阶矩阵,若AB=AC,则B= C对吗

不对.比如B=0;c只是和A相关的为0就不行.AB=AC可变形为A(B-C)=0,即若A不为0,问是否存在D时AD=0?肯定存在,比如A={(1,0)',(0,0)'}D={(0,0)',(0,1)'

(ii) 设A,B为n阶方阵,r(AB)=r(B),证明对于任意可以相乘的矩阵C均有r(ABC)=r(BC).

证明:分两步(1)ABX=0与BX=0同解显然,BX=0的解都是ABX=0的解所以BX=0的基础解系可由ABX=0的基础解系线性表示.由已知r(B)=r(AB)所以两个基础解系所含向量个数相同故两个基