设A为2阶非零矩阵α1α2为齐次线性方程组Ax=0的两个不同的解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:07:47
|-2A|=(-2)^3*|A|=-8*1/2=-4
A^-1=1/|A|xA*=1/2A*所以1/2=|A^-1|=|1/2A*|=1/8|A*|,|A*|=4|3A^-1+2A*|=|3*1/2A*+2A*|=|7/2A*|=(7/2)^3*4=34
(A^2)^T=(A^T)^2=(-A)^2=A^2故A^2是对称的.
1.|(3A^-1)-2A*|=|3A^(-1)-2|A|A^(-1)|=|-A(-1)|=(-1)^4*1/|A|=1/22.D=(-1)*5*(-1)^(3+1)+2*3*(-1)^(3+2)+1
等于0.首先我们知道,一个p*q的矩阵的秩是不会大于p和q的,即r≤min(p,q),因此本题中r(A)≤2,r(B)≤2.关于矩阵乘法的秩有定理:r(AB)≤min(r(A),r(B)),因此本题中
A*=|A|A^-1=(1/2)A^-1所以|(2A)^-1-5A*|=|(1/2)A^-1-(5/2)A^-1|=|(-2)A^-1|=(-2)^3|A^-1|=-8|A|^-1=-16.补充:没错
证明:因为A=E-2αα^T/(α^Tα)所以A^T=E^T-2(αα^T)^T/(α^Tα)=E-2αα^T/(α^Tα)所以AA^T=[E-2αα^T/(α^Tα)][E-2αα^T/(α^Tα)
知识点:r(A)=1的充要条件是存在n维非零列向量α,β,使得A=αβ^T.所以有A^2=(αβ^T)(αβ^T)=α(β^Tα)β^T=(β^Tα)αβ^T=tr(A)A.
A为2阶矩阵,且|A|=-1,说明A有一个正的特征值,一个负的特征值,也就是两个不同的特征值.n阶矩阵有n个不同的特征值必可相似对角化,所以A可以相似对角化再问:A可也能只有一个正的或者负的特征值啊再
2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值
正交矩阵的定义:设A为n阶方阵,若A'A=E,则称A为正交矩阵.其中A'表示A的转置矩阵.证明:因为A为正交矩阵,所以A'A=E由转置的性质(AB)'=B'A'所以有(A^2)'(A^2)=(A'A'
就是求Ax=0的两组线性无关解【2-213----------------->【2-213----------------->【0-85119-528】-----------------&
啊哈,我就做做看,不知道对不对呐,高等代数学的不是很好.d=A的模=1/2,A的模乘以A^-1的模=E的模=1,A^-1=1/dA*,所以原式等于3A^-1-2(dA-1)=2A^-1=2乘以2=4
=(Aa)^TAa=a^T(A^TA)a=a^Ta=故1成立.2,应该为=.根据1,考虑=分别展开,对比可得2.
|A-λE|=(8-λ)(2-λ)^2A的特征值为2,2,8(A-2E)x=0的正交的基础解系为a1=(1,-1,0)^T,a2=(1,1,-2)^T所以属于特征值2的全部特征值为k1a1+k2a2,
x=-3因为,B为3阶非零矩阵,所以|A|=0,得x=-3
AA*=|A|E,∴A*=2A^-1由于A为3阶矩阵,∴|-2A*|=|-4A^-1|=(-4)^3×1/2=-32.再问:那请问这样|-2A*|=(-2)^3|A*|=(-2)∧3|2A^-1|=(
A为3阶方阵,|-2A-1|=(-2)^3|A-1|=-8*(1/3)=-8/3-1是逆的意思吧,否则一个矩阵和1是没法做减法的
1.(B^2)'=(B*B)'=B'*B'=(-B)*(-B)=B^22.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA(AB+BA)'=(AB)'+(BA)'
|-3A|=(-3)^3|A|=-27*2=-54