设A为m*n矩阵,证明方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:48:58
不知道条件中是否有n>=m,如果是n>=m则可知无论经过怎样化简,不会使得A的某一行或者某一列为0,类似方阵若A不为0,则肯定有逆矩阵,我想这里也是一样
方法:证明齐次线性方程组AX=0(1)与A^TAX=0(2)同解即可显然(1)的解是(2)的解设X0是(2)的解,则A^TAX0=0所以X0^TA^TAX0=0所以(AX0)^T(AX0)=0所以AX
利用知识点r(AB)
初等行变换相当于在矩阵的左边乘一系列初等矩阵初等矩阵的乘积是可逆矩阵P(A,B)=(E,X)PA=EPB=X得P=A^-1,X=A^-1B
经济数学团队帮你解答,有不清楚请追问.请及时评价.
OK 这个有图片 请点击看大图
C=AB是m*m阶矩阵,由于r(A)≤n,r(B)≤n,利用公式:r(AB)≤min{r(A),r(B)}得r(AB)≤n,而m﹥n,所以|AB|=0,即得C=AB不可逆再问:请问m﹥n,所以|AB|
充分性:当r(A)=m时,则A是行满秩的,A多添任一列向量组成的增光矩阵还是行满秩的,即有r(Aei)=m,其中ei是单位阵的第i列,于是方程Ax=ei有解bi,令X=【b1b2...bm】,则AX=
A^m=0A^m-E^m=-E^m针对左边利用展开式(A-E)[A^(m-1)+A^(m-2)E+……+E]=-E矩阵可逆的定义就是看这个矩阵和另外一个的乘积是否为单位阵这个只能这种方法
首先,因为(A'A)'=A'(A')'=A'A,所以A'A是对称矩阵.又对任一非零向量X,由于r(A)=n,所以AX≠0.(否则AX=0有非零解)所以X'(A'A)X=(AX)'(AX)>0.所以A'
应该是行列式|AB|=0因为A为m*n的矩阵所以r(A)
参考\x09 人是那样复杂的一种动物,想了解对方根本是不可能的一件事,没有了解,又不能相处,倒不如独身.——《美娇袅》
充分性:若A=ab^T,由于r(a)=r(b)=1,因此r(A)=1.综上,r(A)=1.必要性:若r(A)=1,则A的列向量组的秩是1,其极大无关组记为a,于是A的列都可以用a线性表出,即存在b1,
1、因为A*A'('表示转置)为n*n的矩阵,而一个矩阵的秩必≤它的行数或列数,所以r(A*A')≤n可以直接得到.2、需要说明的是,r(n)中的n是什么?你可能看错了,一个数是不必算秩的(一个非0数
1、当m为偶数时,A^m=[A^(m/2)]'[A^(m/2)]为正定阵2、当m为奇数时,A^m=A^((m-1/)2)AA^((m-1)/2)=[A^((m-1/)2)]'AA^((m-1)/2)=
A进行LU分解,使得L行满秩,U列满秩,令X=U'(U'U')^-1(LL')^-1L'AXA=LUU'(U'U')^-1(LL')^-1L'LU=A可以看出X=U'(U'U')^-1(LL')^-1
AB的维数:m*m,是个方阵R(AB)
证:对任一n维向量x≠0因为r(A)=n,所以Ax≠0--这是由于AX=0只有零解所以(Ax)'(Ax)>0.即有x'A'Ax>0所以A'A为正定矩阵.注:A'即A^T
只需证明A'A的秩等于(A'A,A'B)的秩,即r(A'A)=r(A'A,A'B)首先r(A'A)