设A为nn矩阵,证明如果A=A,那么秩(A) 秩(A-E)=n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 12:08:05
因为b1,b2,...,bn是AX=0的解而齐次线性方程组的解都可由其基础解系线性表示所以b1,b2,...,bn可由Ax=0的基础解系线性表示
A为非零矩阵所以A的秩>0假设A不可逆则A的秩=r(A)+r(B)-n可知0=r(|A|E)=r(A*A)>=r(A*)+r(A)-n=r(A*)-1从而r(A*)0从而r(A*)=1于是r(AT)=
有个结论: |A*| = |A|^n直接可得你的结论 呵呵 suxiaoyu199105 说的不对, 这个结论与A是否
方法:证明齐次线性方程组AX=0(1)与A^TAX=0(2)同解即可显然(1)的解是(2)的解设X0是(2)的解,则A^TAX0=0所以X0^TA^TAX0=0所以(AX0)^T(AX0)=0所以AX
证:由A*=A^T得AA^T=AA*=|A|E.又A为非零实矩阵,不妨设A的第一行不全为0,考虑A的第一行分别乘A^T的第一列之和,则有|A|=a11^2+a12^2+...+a1n^2≠0所以A可逆
参考这个:其中A'即A^T,这是转置矩阵的另一个记法.
因为A*=-A^T所以Aij=-aij因为A为3阶非零实矩阵所以必有一行元素不全为0设i行不全为0,按第i行展开|A|=ai1Ai1+ai2Ai2+ai3Ai3=-(ai1)²-(ai2)&
证:首先(A^TA)^T=A^T(A^T)^T=A^TA故A^TA是对称矩阵.又对任一非零列向量x由r(A)=n知AX=0只有零解所以Ax≠0再由A是实矩阵,所以(Ax)^T(Ax)>0即x^T(A^
因为A的伴随矩阵的行列式等于A的行列式的n-1次方所以A*的行列式不为零.则得到(A*)=n再问:我可以再问你几个吗再答:嗯
1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||
知识点:r(A)=1的充要条件是存在n维非零列向量α,β,使得A=αβ^T.所以有A^2=(αβ^T)(αβ^T)=α(β^Tα)β^T=(β^Tα)αβ^T=tr(A)A.
也就是相当于证明当A^3=0时A^2=0.因为k是常数且k>2所以只要k=3时候A^k=0那么A^k无论k是什么,A^k=0然后就设出a11,a12,a21,a22直接3次方最后你能知道,除非四者都等
A正定,故A的特征值λ都大于0所以E+A的特征值1+λ都大于1所以|E+A|(等于它的所有特征值之积)>1.再问:特征值可以相加吗?例如A,B均为N阶矩阵,如果A的特征值为a1,...an;B的特征值
1、当m为偶数时,A^m=[A^(m/2)]'[A^(m/2)]为正定阵2、当m为奇数时,A^m=A^((m-1/)2)AA^((m-1)/2)=[A^((m-1/)2)]'AA^((m-1)/2)=
=(Aa)^TAa=a^T(A^TA)a=a^Ta=故1成立.2,应该为=.根据1,考虑=分别展开,对比可得2.
A进行LU分解,使得L行满秩,U列满秩,令X=U'(U'U')^-1(LL')^-1L'AXA=LUU'(U'U')^-1(LL')^-1L'LU=A可以看出X=U'(U'U')^-1(LL')^-1
大家都不帮你我来帮你因为AA*=|A|E,两边同时乘A逆,有A*=|A|A逆,两边同时取行列式,有|A*|=||A|A逆|=|A|^(N)|A逆|又因为|A逆|=|A|分之一(这个就不用给你推了吧.A
由已知,|A-λE|=0又因为A^T=-A所以有|A+λE|=|(A+λE)^T|=|A^T+λE|=|-A+λE|=(-1)^n|A-λE|=0所以-λ也是A的特征值.
由A为正交矩阵的定义,有A^T*A=E两边取行列式,有|A^T*A|=|A^T|*|A|=|E|即|A|^2=1,|A|=±1
相容范数不小于谱半径,所以充分性显然必要性基于这样一个结论:对于任何给定的方阵A以及正数e,存在一个相容范数使得║A║