设A为n阶方阵,x和y为维列向量,证明:若Ax=Ay且x≠y,则A必为非奇异矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:37:20
设A为n阶方阵,x和y为维列向量,证明:若Ax=Ay且x≠y,则A必为非奇异矩阵
设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.

直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.

设A为n阶方阵,α1,α2,...,αn为线性无关的n个n维列向量.证明:R(A)=n﹤=﹥ Aα1,Aα2,...,A

因为(Aα1,Aα2,...,Aαn)=A(α1,α2,...,αn)当A可逆时,r(Aα1,Aα2,...,Aαn)=r(α1,α2,...,αn)=n.所以Aα1,Aα2,...,Aαn线性无关.

设A为n阶方阵,A的秩R(A)=r小于n,那么在A的n个列向量中,

只有极大无关组(含r个向量)才能表示其余的向量任意r个列向量可能线性相关

设A为n阶方阵,证明当秩(A)

这个很简单啊,r(A)

设n阶方阵A的各列元素之和为5,则A的一个特征值是

A的一个特征值是5A的特征值是|λE-A|=0的根,考虑方阵λE-A,他的各列元素之和是λ-5因为λE-A是把A取负再把每一列的某个元素加上一个λ.这样根据行列式的性质,通过变换:把第2至第n行各加到

设n阶方阵A的行列式为a,且每一行元素之和为b(不等于0),则A的第n列元素的代数余子和是?

过程如下,把|A|中所有列均加到第n列,结果第n列元素变为b,然后从第n列中提取b,设提取后的行列式为|B|,则b|B|=a,即|B|=a/b,把|B|行第n列展开,就得到|A|的第n列元素的代数余子

老师求救啊 A为n阶方阵,x,y为n维列向量,并且Ax=0,A的转置乘于y=2y,证明x与y正交!

A^Ty=2y,(A^Ty)^T=(2y)^T,y^TA=2y^T,右乘x,得y^TAx=2y^Tx=0,因此x、y正交.

几代:设α是n维列向量(n > 1),则n阶方阵A = ααT 的行列式|A|的值为?

1+xa≠0,可以知道aa'(a‘表示转置)也不会为0,而r(aa')<=r(a)<=1这说明aa‘的秩为1.这样aa'的特征值正好是n-1个0,有一个不

设A为n阶方阵,x和y为n维列向量.证明:若Ax=Ay且x不等于y,则A必为非奇异矩阵

A(x-y)=0,于是非零向量x-y是方程Ax=0的一个非零解.书上有定理,此时A必非奇异再问:什么定理。你能说说吗?再答:应该是奇异矩阵。在方阵的条件下,齐次线性方程组Ax=0有非零解的充分必要条件

设n阶方阵A和B满足条件A+B=AB,证明A-E为可逆矩阵

证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵

设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:任意n维向量B都有//AB//=

分三步:1.因为a为n维单位列向量,所以有a'a=1(记a'=aT)2.A'A=(E-2aa')(E-2aa')=E-4aa'+4aa'aa'=E-4aa'+4aa'=E3.||AB||=√(AB)'

设A和B为n阶方阵,A^2B+AB^2=E 证明A+B可逆

A^2B+AB^2=E即AAB+ABB=E所以A(A+B)B=E所以A可逆,B可逆所以A(A+B)=B^-1A+B=A^-1B^-1所以A+B可逆且(A+B)^-1=BA

(1)A为n阶可逆方阵,α,β为n维列向量,求证:det(A+αβT)=(1+βTA-1α)det(A) (2)设A=(

(1)考虑分块矩阵的行列式|H|=Aαβ^T-1第2行减第1行的β^TA,得Aα0-1-β^TA^-1α所以|H|=-(1+βTA^-1α)|A|.另一方面,|H|第1行加第2行的α倍,得A+αβ^T

方阵性质证明问题设AB为n阶方阵,证明|AB|=|A||B|

我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们

设a,b均为n阶方阵,则必有

这是个定理或性质.它的证明比较繁琐,若学过Laplace展开还好一点.记住这个结论就行了,不必深究它的证明!

a为n维列向量,n阶方阵A=a*a^T,则|A|=?

是等于0的.如果是填空选择,你可以举个例子,比如a=(1,1).详细的证明就不写的,你会发现A的每一行(列)都是成比例的,所以其对应的行列式为0