设A为n阶方阵且满足A^2-2A-E=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:02:19
(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^
Only_唯漪的证法我好像没有看懂的样子……果然代数都忘光了,这里给出一种Jordan标准型的证法参考一下:——————————————————————————————————————————∵R(E
|A-E|=|A-AA^T|=|A(E-A^T)|=|A||E-A^T|=|A||E-A|---(E-A^T)^T=E-A=|A|(-1)^(2n+1)|A-E|=-|A||A-E|所以|A-E|(1
|kA|=k^n|A|所以|-3A|=(-3)^n|A|=2*(-3)^n
设A的特征值是a,则a^2-3a+2是A^2-3A+2E的特征值.由已知A^2-3A+2E=0,而零矩阵的特征值只能是零,所以a^2-3a+2=0,即(a-1)(a-2)=0.所以a=1或a=2.即A
(A+4E)(A-3E)=A^2+A-12E=-6E=>(A+4E)^(-1)=-(A-3E)/6
(A-I)r(A-3I)=n是加号连接吧即r(A-I)+r(A-3I)=n因为A≠I,所以A-I≠0,所以r(A-I)>=1所以r(A-3I)
证明:(1)因为A^2=A所以(A+I)A-2(A+I)=-2I所以(A+I)(A-2I)=-2I所以A+I可逆,且(A+I)^-1=(-1/2)(A-2I).(2)是要证r(A)+r(I-A)=n吧
将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1
设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)
A^2=AA=E===>A=A'=A^(-1)=A^*并且A不为0或(-E)因为E^2=E===>A^2-E^2=0===>(A+E)(A-E)=0--->A=EToyourquestion:IfAB
A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E
5.B14.A,B,C
DA^2=B^2,则|A^2|=|B^2||AA|=|BB||A||A|=|B||B||A|^2=|B|^2
设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a=a
用伴随阵与逆矩阵的关系可如图得到答案是2A.经济数学团队帮你解答,请及时采纳.
因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立