设A为2n+1阶方阵,且满足AA^T =E,|A|>0,证明行列式|A-E|=
设A为2n+1阶方阵,且满足AA^T =E,|A|>0,证明行列式|A-E|=
.设A为n阶方阵,且满足AA^T =E和|A|=-1,证明行列式|E+A|=0.
线性代数问题.设A为n阶实方阵,且AA^T = E,证明行列式 | A |= ±1.
设a为n维列向量,且a∧Ta=1,矩阵A=E-aa∧T,证明A的行列式等于0
设A为奇数阶方阵,且AA^T=E,l Al=1.证明E-A不可逆
设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1
设A为n阶方阵,且满足(A-E)^2=2(A+E)^2,证明A是可逆的,并求A^-1
设4阶方阵A满足/A+3E/=0,AA^T=2E,矩阵/A/
设A为n阶方阵,且满足A^2-3A+2E=0,证明A的特征值只能是1或2
设A为n阶方阵,E为n阶单位阵,满足条件A^2=A,且A≠E,证明:(1)A+E可逆,并求(A+E)^-1 ,(2)A不
设A,B均为N阶方阵,满足AA(T)=E,B(T)B=E.|A|+|B|=0.证明:|A+B|=0.A(T)为A的转置.
矩阵证明题:若n阶方阵满足AA^T=E,设a是n维列向量,a^Ta=/0矩阵A=E-3aa^T.