设A为n阶正交矩阵,α∈R,求证

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 10:34:14
设A为n阶正交矩阵,α∈R,求证
设A,B是两个n阶正交矩阵,且AB的行列式为-1.n为奇数 求A-B的行列式

题目应该是哪里抄错了,下面构造例子说明这一点.设2阶矩阵C(t)=[cos(t),sin(t);-sin(t),cos(t)],可知C(t)正交且|C(t)|=1.对n=3,考虑3阶分块矩阵A=[-1

设A,B都是n阶正交矩阵,且|AB|

证:因为正交矩阵的行列式是正负1再由|AB|

试证明:设A为n阶实对称矩阵,且A^2=A,则存在正交矩阵T,使得T^-1AT=diag(Er,0),其中r为秩,Er为

证明:A为实对称矩阵,则币可以对角化,令Aa=xa则A^2=Ax^2a^2=xax(x-1)a=0a≠0,x=0,1则A矩阵的特征值只能为0,1所以r(A)=r(=特征值非0的个数所以

设A为n阶实对称矩阵,若A的平方等于E,证明A是正交矩阵

正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵对称矩阵A'=A所以A方=E,命题成立

如果A,B为n阶正交矩阵,求证AB也是正交矩阵.

这是显然的因为A,B为n阶正交矩阵所以A^=A-1,B^=B-1因此(AB)^=B^A^=B-1A-1=(AB)-1从而AB也是正交矩阵

设A.B为n阶正交矩阵,n为奇数,证明|(A-B)(A+B)|=0.

利用行列式性质:|AB|=|A||B|,及|A‘|=|A|.|(A-B)(A+B)|=|(A-B)||(A+B)|=|(A-B)'|*|(A+B)|=|(A'-B')||(A+B)|=|(A'-B')

设a是n维列向量,A为n阶正交矩阵,证明||Aa||=|a|

证:因为A为正交矩阵,所以A^TA=E(单位矩阵)从而||Aa||=√(Aa)^T(Aa)=√a^TA^TAa=√a^Ta=||a||再问:||a||?==√a^Ta这是为什么再答:不谢,那是公式。

线性代数:n阶方阵A为正交矩阵,证明A*为正交矩阵

因为n阶方阵A为正交矩阵,故A'A=E,得A^-1=A'可逆!且IA'AI=IA'IIAI=IAI^2=IEI=1.A^-1=A*/IAIA*=IAIA^-1=IAIA'故(A*)'A*=(IAIA'

设A,B均为n阶矩阵,r(A)

(D)正确.联立方程组Ax=0Bx=0则系数矩阵的秩r(A;B)

设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2]

因为A为正交矩阵所以A^TA=E.所以[Aa1,Aa2]=(Aa1)^T(Aa2)=a1^TA^TAa2=a1^Ta2=[a1,a2]

设A为可逆n阶方阵,证明存在正交矩阵P,Q使得PAQ为对角矩阵

这个命题不对!反例:A=0-101-20-10-1则A可逆但A的3重特征值只有一个线性无关的特征向量,A不能对角化!再问:这是考试一道原题--···而且题目我是原封不动打上来的··

设A为n阶矩阵,证明A为正交阵的充分必要条件是A*为正交阵

A为正交阵当且仅当A的逆为正交阵(这个结论应该都讲过,不用证了吧……要证的话也很简单),A*=|A|乘以A的逆,得证.

设α为n维列向量,E为n阶单位矩阵,证明A=E-2αα^T/(α^Tα)是正交矩阵

证明:因为A=E-2αα^T/(α^Tα)所以A^T=E^T-2(αα^T)^T/(α^Tα)=E-2αα^T/(α^Tα)所以AA^T=[E-2αα^T/(α^Tα)][E-2αα^T/(α^Tα)

设A与B都是N阶正交矩阵试证AB也是正交矩阵

只要借助转置和逆的穿透律以及正交矩阵的定义即可,证明如图

设A,B都是n阶的正交矩阵,证明A的伴随矩阵A*也是正交矩阵

AA^T=A^TA=E,A^(-1)=A^T|A|^2=1,|A|=1.-1A*=|A|A^(-1)=A^T或者-A^TA*=A^T时,A*(A*)^T=A^T(A^T)^T=A^TA=EA*=-A^

设A为n阶矩阵,证明r(A^n)=r(A^(n+1))

如果知道Jordan标准型的话就显然了.如果不知道的话就证明A^{n+1}x=0和A^nx=0同如果A非奇异则显然成立,否则利用n-1>=rank(A)>=rank(A^2)>=...>=rank(A

设A为n阶矩阵,R(A)

R(A)=n时,R(A*)=nR(A)=n-1时,R(A*)=1R(A)

设A为r*r阶矩阵,B为r*n阶矩阵且R(B)=r,证明:

1)由AB=0,得R(A)+R(B)《r.又R(B)=r,故R(A)《0.显然R(A)》0.故R(A)=0既A=02)如果AB=B,则AB-B=0.即(A-E)B=0,R(B)+R(A-E)《r.又R