设a为n阶非零矩阵,则某个二次型
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:15:46
终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是
1(A+E)(A^4-A^3+A^2-A+E)=A^5-A^4+A^3-A^2+A+A^4-A^3+A^2-A+E=A^%+E=E所以A+E可逆逆矩阵为A^4-A^3+A^2-A+E(A-E)(A^4
用性质,答案是-n.
另一个方法是这样:令B=E-A,则A=E-B代入A^3=0得E-3B+3B^2-B^3=0所以B(B^2-3B+3E)=E.所以B可逆,且B^-1=B^2-3B+3E.即E-A可逆,且(E-A)^(-
因为|A|=0所以r(A)再问:题目要求B是n阶矩阵,这里只证明了B可以是n×1矩阵呀?再答:令B的第1列为(k1,...,kn)^T,其余列都取0即可.
∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变
由于C可逆,所以r(AC)=r(A)即有r=r1故(C)正确.
证:首先(A^TA)^T=A^T(A^T)^T=A^TA故A^TA是对称矩阵.又对任一非零列向量x由r(A)=n知AX=0只有零解所以Ax≠0再由A是实矩阵,所以(Ax)^T(Ax)>0即x^T(A^
由于A的秩
二次型的矩阵必须是对称矩阵所给的选项中只有A^TA是对称矩阵--(A^TA)^T=A^T(A^T)^T=A^TA.所以B正确再问:老师好,(A^TA)^T=A^T(A^T)^T=A^TA.这样变换的目
C不对,因为此时只能用初等行变换才有相应结果
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
因为AB矩阵为m×m方阵,所以未知数的个数为m个,又因为:r(AB)≤r(A)≤n,(1)当m>n时,r(AB)≤r(A)≤n<m,即系数矩阵的秩小于未知数个数,所以方程组有非零解.(2)当m<n时,
只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������صģ�B���
m>n时rank(AB)
(1)对于选项A.若λE-A=λE-B,则:A=B,但题目仅仅是A与B相似,并不能推出A=B,故A错误;(2)对于选项B.相似的矩阵具有相同的特征值,这个是相似矩阵的性质,这是由它们的特征多项式相同决
证:对任一n维向量x≠0因为r(A)=n,所以Ax≠0--这是由于AX=0只有零解所以(Ax)'(Ax)>0.即有x'A'Ax>0所以A'A为正定矩阵.注:A'即A^T
1.A是实矩阵时正确x满足A^TAx=0,则x^TA^TAx=0,即有(Ax)^T(Ax)=0,故有Ax=02.不对.不管A是否可逆,Ax=0时,(等式两边左乘A^T)都有A^TAx=0.