设A是n×n矩阵 X是任意的n维列向量 B是任意的n阶方阵 则下列说法错误的是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:37:41
设ε1ε2ε3.εn是n维基本向量组.即每个εi=(0,0,...,0,1,0,...,0)^T,1在第i个位置.由已知条件,Aεi=0.所以A(ε1,ε2,ε3,.,εn)=O.即有AEn=O.所以
由于:R(B)>=R(AB).定理(条件一)B是m*n矩阵,所以R(B)=n且R(B)
这是最小二乘解,解释有点麻烦,楼主看下线性代数中最小二乘法吧
设A=(aij)i,j=1,.,n.设列向量ei=(0,...,0,1,0,...,0)^T,其中1是第i个坐标,i=1,2,...,n.K^n中任意非零列向量都是A的特征向量===>Aei=tiei
由已知,r(A)=r(A,b)=n又因为A是实矩阵,故有r(A'A)=r(A)=n所以A'A是n阶可逆矩阵
A的第i行乘-1等于第i列乘-1,故对角线以外的元素均为0A的第i,j行互换等于第i,j列互换,故对角线上元素相等.
(α,β)=β^Tα,(Aα,Aβ)=β^TA^TAα 显然当A是正交阵的时候(Aα,Aβ)=(α,β) 反过来,令M=A^TA,M是一个对称阵 取α=β=e_i得到M(i,i)=1,这里e_i
R(E)=n=R(AB)≤R(B)≤n,∴R(B)=n=B的“列秩”=B的列数.∴B的列向量组线性无关.
0是可以取到的,除非要求x非零非负这部分显然,只要知道正定矩阵的逆也正定即可小于1这部分可以用Shermann-Morrison公式:(A+xx')^{-1}=A^{-1}-A^{-1}xx'A^{-
在n维欧氏空间中,任意n个线性无关的向量都可以作为空间的一组基在本题中,可逆矩阵的n个列向量线性无关,故可作为一组基
首先,因为(A'A)'=A'(A')'=A'A,所以A'A是对称矩阵.又对任一非零向量X,由于r(A)=n,所以AX≠0.(否则AX=0有非零解)所以X'(A'A)X=(AX)'(AX)>0.所以A'
AXX^T0合同于A00-X^TAX再问:��ô��ͬ�ģ�再答:������,���½�Ӧ��д-X^TA^{-1}X,���ÿ�Gauss��ȥ��,��A��ȥX��Ȼ,��Ϊ�����һ���
用判别法则rank(A^TA,A^Tb)>=rank(A^TA)同时rank(A^TA,A^Tb)=rankA^T(A,b)
1.选C,因为只要有一个特征值为0,那个这个矩阵对应的行列式的值就为0,那么就不可逆了.2.选B,初等矩阵是指,由单位矩阵经过一次矩阵初等变换得到的矩阵.那么你同样可以把4个选项分别作初等变化看能不能
把B写出分块矩阵的形式,B=(b1,b2,..bs),其中bi是B的第i个列向量,(i=1,2..s)AB=0A(b1,b2,..bs)=(Ab1,Ab2,..Abs)=0=(0,0,...0)Abi
对任何非0的n维实向量X,由于rank(A)=n,则AX!=0,从而有X^T(A^TA)X=(AX)^T(AX)=|AX|^2>0故A^TA是正定阵
D-----根据定义,矩阵的秩是最高阶非零子式的阶.A的秩是r,所以高于r阶的子式全为零,且r阶子式一定有非零的.
证明:设A=(aij).取xi是第i个分量为1其余分量为0的m维行向量,i=1,2,…,m;取yj是第j个分量为1其余分量为0的n维列向量,j=1,2,…,n.则有xiAyj=aij,i=1,2,…,
因为反对称矩阵的特征值是0或者纯虚数.如果A+cE不可逆,则-c为反对称矩阵的特征值,出现矛盾,所以矩阵A+cE恒可逆补充证明:由反对称阵定义得A=-A'设ξ是属于特征值λ的特征向量,即Aξ=λξ那么