设A是n阶方阵,若存在n阶方阵B不等于0,使得AB=0,证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:35:03
A与所有n阶方阵乘法可交换,我们只需取第一种初等矩阵Pi(k)(k不等于零和1)进行验证即可.PA的第i行的元素是A的第i行元素的k倍,AP的第i列的元素是A的第i列的元素的k倍,其它元素和A的元素相
CB^n=ACB^(n-1)=...=A^n*B所以任何多项式F有CF(B)=F(A)C所以任何R事B的特征值X属于B的R-根子空间,则存在n有(R-B)^nX=0则(R-A)^nCX=C(R-B)^
证明错误举个反例就行A=[2,0;0,1]B=[0,0;1,0]即满足“n阶非零方阵B,使得AB=BA=B”,但是A≠E
对再答:行秩等于列秩等于矩阵的秩再答:行向量组的秩是它最大线性无关组中向量的个数
这个很简单啊,r(A)
存在元素为整数的n阶方阵B,使得AB=E,即方阵A存在逆矩阵.一个方阵,存在逆矩阵的充分必要条件是行列式不为0
用反证法.若R(A)=N,则A可逆.A^(-1)[AB]=A^(-1)*0=0,又A^(-1)[AB]=B,因此,B=0.与B不等于0矛盾.故,R(A)
R(A)
因为B≠O(矩阵),所以存在B的一列b≠0(列向量)因为AB=0,所以Ab=0即齐次线性方程组AX=0存在非零解,所以R(A)
给你例子看看A=[1,0;0,0],B=[0,0;0,1]则因为r(A)=r(B)=1,所以A与B等价.但它们的行向量组,列向量组都不等价A的行向量组是(1,0),(0,0)B的行向量组是(0,0),
因为矩阵B不一定可逆,如果B可逆,则由AB=B两边左乘B^(-1)就得到A=E,但是现在不知道B是否可逆,只能得到AB-B=O,即(A-E)B=O,而我们知道如果AB=O,不一定有A=O或B=O成立,
5.B14.A,B,C
假设R(A)=N那么A为满秩矩阵,那么A可逆,A*A的逆矩阵*B=0,所以B=0,与条件矛盾.所以R(A)〈N
因为AB=0所以B的列向量都是AX=0的解又因为B≠0,所以AX=0有非零解.所以r(A)
例如A=(01)(00)则A≠0且A^2=0
A是正交矩阵的充分必要条件是A'A=EAA'=EA^(-1)=A'.由A,B是正交矩阵,所以A'A=E,B'B=E,等等.所以有[A^(-1)]'A^(-1)=(A')'A'=AA'=E,所以A^(-
===》如果|A|=0,则0为其特征根,于是存在列向量x1,使得Ax1=0设列向量x2=...=xn=0,设B=(x1,x2,...,xn),则B≠0,且AB=A(x1,x2,...,xn)=(Ax1
这是个定理或性质.它的证明比较繁琐,若学过Laplace展开还好一点.记住这个结论就行了,不必深究它的证明!