设A是n阶方阵,若对任意的n维向量x均满足Ax=0则
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:26:20
(A+E)的平方=OA²+2A+E=OA(A+2E)=-EA(-A-2E)=E所以有定义可知A可逆.
充分性:如果A=βα,那么r(A)再问:不懂,怎么和秩联系了呢再答:采纳我,我加你qq再问:不理解再答:我加你qq,现在把我选为满意答案,谢谢
对再答:行秩等于列秩等于矩阵的秩再答:行向量组的秩是它最大线性无关组中向量的个数
1.|λA|的元素的余子式Mij每行可提出一个λ因子,故有λ^n-1A*2.当A,B可逆时,用公式A*=|A|A^-1即可证明当A,B不可逆时,参考3.n>2时若A可逆,AA*(A*)*=A|A*|E
1+xa≠0,可以知道aa'(a‘表示转置)也不会为0,而r(aa')<=r(a)<=1这说明aa‘的秩为1.这样aa'的特征值正好是n-1个0,有一个不
真巧,我刚做过这道题\x0d\x0d请看图片:\x0d\x0d
R(A)
因为B≠O(矩阵),所以存在B的一列b≠0(列向量)因为AB=0,所以Ab=0即齐次线性方程组AX=0存在非零解,所以R(A)
A是标量矩阵(即一个常数再乘以单位阵)证明很简单,把A设出来,=(aij)然后分别让它和Eij可交换(Eij是ij位置上为1,其余全为0的矩阵)再两边作比较就可以了
因为矩阵B不一定可逆,如果B可逆,则由AB=B两边左乘B^(-1)就得到A=E,但是现在不知道B是否可逆,只能得到AB-B=O,即(A-E)B=O,而我们知道如果AB=O,不一定有A=O或B=O成立,
证法一由于有关系式(A的秩)+(Ax=0的解空间维数)=n现在依照题意,Ax=0的解空间是整个空间,即(Ax=0的解空间维数)=n所以A的秩是零,因此A=0证法二(反证)设A≠0,则A的某个元素a(i
设k1a+k2,Aa+,.+km,A^(m-1)a=0①①左乘A^﹙m-1﹚k1A^﹙m-1﹚a=0A^﹙m-1﹚a≠0∴k1=0①成为k2,Aa+,.+km,A^(m-1)a=0②②左乘A^﹙m-2
假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾
Ax=0只有零解所以|A|不等于0而|A^k|=|A|^k不等于零所以A^kx=0只有唯一解,就是零解
因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性
1)r(A)=n等价于det(A)≠0等价于det(A*)=1等价于A*可逆等价于r(A*)=n2)
假设A不可逆,则:R(A)
a^TAa是一个数,则a^TAa=[a^TAa]^T=a^tA^Ta=-a^TAa,2aTAa=0,得a^TAa=0.
BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB
不对是|A|≠0由已知AX=0只有零解,这等价于|A|≠0.再问:刘老师早上好,答案就是A=0再答:不好意思我搞反了是所有的X,AX=0此时,基础解系应该含n个向量所以n-r(A)=n所以r(A)=0