设A的平方等于E,证明,A的特征值只能是1或-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:11:07
(A+E)的平方=OA²+2A+E=OA(A+2E)=-EA(-A-2E)=E所以有定义可知A可逆.
正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵对称矩阵A'=A所以A方=E,命题成立
Aa=ra,r为特征根.a=Ea=A^2a=A(Aa)=Ara=rAa=r(ra)=r^2a=>r^2=1,r=1or-1.
A^2-5A+7E=0;A^2-5A+6E=-E;(A-2E)(A-3E)=-E;(3E-A)(A-2E)=E;即3E-A可逆,逆矩阵为A-2E
A^2+A=E所以A^2+A-2E=-E,即(A+2E)(A-E)=-E,因此-(A+2E)(A-E)=E.同理(A-E)[-(A+2E)]=E所以(A-E)可逆,逆矩阵为-(A+2E)
又是这道题啊请看图片:
由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.
因为(AB)^(-1)=B^(-1)A^(-1)所以(A^2)^(-1)=(AA)^(-1)=A^(-1)A^(-1)=(A^(-1))^2
一楼用《矩阵论》来解可能LZ不懂啦.其实就用《线性代数》也能搞定的.A^2-A=0(此处的0表示零矩阵)那么根据秩的不等式:r(A)+r(I-A)-n
因为A^2-2A-E=0所以A(A-2E)=E所以A-2E可逆,且(A-2E)^-1=A.
(E--A)(E+A+A^2+A^3+...+A^(n--1))=E+A+A^2+A^3+...+A^(n--1)--A--A^2--A^3--.--A^n=E--A^n=E,因此E-A可逆,且(E-
其实这种题目最关键的就是要构造出E+A的式子:A^2=AA^2-A=OA^2-A-2E=-2E(A+E)(A-2E)=-2E(A+E)(E-A/2)=E表明A+E可逆,并且A+E的逆矩阵就是E-A/2
A²+3A-E=0A(A+3E)=E所以(A+3E)^(-1)=A
AA=A=>AA-AE=O=>A(A-E)=O=>|A|*|A-E|=0但A≠E,所以|A|=0
设λ是A的任意一个特征值,α是λ所对应的特征向量Aα=λαA²α=λAαEα=α=λ·λα=λ²αλ²=1λ=±1所以A的特征值只能是1或-1
假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾
设λ是A的任意一个特征值,α是λ所对应的特征向量Aα=λαA²α=λAαEα=α=λ·λα=λ²αλ²=1λ=±1所以A的特征值只能是±1
设λ是A的任意一个特征值,α是λ所对应的特征向量Aα=λαA²α=λAαEα=α=λ·λα=λ²αλ²=1λ=±1所以A的特征值只能是±1
拿你这题来说等式右边凑出一个k*E等式左边凑出一个(A+E)(A+mE)既(A+E)(A+mE)=kE然后拆开:A^2+(m+1)A+mE-kE=0与A^2-A=0比较系数得m+1=-1m-k=0求出
(A+E)(A-2E)=A^2-2AE+EA-2E^2=A-2A+A-2E=-2E所以A+E的逆应该是-(A-2E)/2吧