设f1 f2分别是椭圆x² 4 Y² 3=1的左右焦点,动点P
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:41:26
a²=4,b²=1c²=3F1F2=2c=2√3令PF1=p,PF2=q则p+q=2a=4平方p²+q²+2pq=16p²+q²=
由题意F2(3,0),|MF2|=5,由椭圆的定义可得,|PM|+|PF1|=2a+|PM|-|PF2|=10+|PM|-|PF2|≤10+|MF2|=15,当且仅当P,F2,M三点共线时取等号,故答
在△ABF2周长为定值时,要想AF2+BF2最大,则必有AB最小,只要AB直线垂直x轴即可△ABF2周长=AF1+AF2+BF1+BF2=2a+2a=8可利用c²=4-b²和F1的
因为椭圆过(根号2,1)所以有2/a^2+1/b^2=1;且因为a大于b大于0,a^2-b^2=2,所以:b=根号2;a=2.所以方程为:X^2/4+Y^2/2=1.
双曲线X方/4减Y方=1a^2=4b^2=1c^2=a^2+b^2=5设PF1=mPF2=n双曲线定义|m-n|=2a=4且
易知a=2,b=1,c=根3故F1(-根3,0)、F2(根3,0),设P(x,y),则向量PF1×向量PF2=(-根3-x,y)×(根3-x,-y)=x^2+y^2-3=x^2+1-(x^2/4)-3
(1)(设c=√(a^-b^),AF2垂直F1F2,∴AF2:x=c,A是椭圆上一点,取A(c,b^/a),AF1:y=[b^/(2ac)](x+c),原点O到AF1的距离为[b^/(2a)]/√[1
答案为:1这一题只要你学了焦半径就很简单.首先e=椭圆上一点倒左(右)焦点的距离/这一点到左(右)准线的距离(这就是焦半径的公式).所以你设P(x,y)所以:绝对值PF1=a+ex绝对值PF2=a-e
在△F1PF2中,|F1F2|/|PF1|=cos∠PF1F2=√3/2,|PF2|/|F1F2|=tan∠PF1F2=√3/3且|F1F2|=2c则|PF1|=2c/(√3/2)=4c/√3,|PF
①由题意得c=√a^2-b^2=1∴F2(1,0)k=tanπ/4=1∴直线方程为y-0=1(x-1)即y=x-1将y=x-1代入椭圆x²/4+y²/3=1中化简整理得7x^2-8
a=10,b=8,c^2=a^2-b^2=100-64=36,c=6|F1F2|=2c=12|MF1|+|MF2|=2a=20,设|MF1|=t,则|MF2|=20-t,由余弦定理144=t^2+(2
1、2a=4a=2x²/4+y²/b²=1过A代入得b²=3x²/4+y²/3=12、y-3/2=kxy=kx+3/2代入3x²+
1、a²=1a=1所以AF1+AF2=2a=2BF1+BF2=2a=2相加AF1+BF1+AF2+BF2=4AB+AF2+BF2=4AF2+BF2=4-AB等差则2AB=AF2+BF2=4-
设A(x1,y1),B(x2,y2)c^2=a^2-b^2=4-1=3c=3^1/2F1(-3^1/2,0)直线l:y=k(x+3^1/2)x^2+4y^2=4x^2+4k^2(x+3^1/2)^2=
由基本不等式,2*丨向量PF1丨*|向量PF2|≤(丨向量PF1丨+|向量PF2|)^2=(2a)^2=4a^2=36
当PF1⊥,F1F2,那么P(-√5,0)当PF2⊥F1F2,那么P(√5,0)当PF1⊥PF2,也就是∠F1PF2=90设P(x,y),x^2/9+y^2/4=1①根据直线垂直:y/(x-√5)*y
焦点F1、F2坐标很容易得到(1,0)(-1,0)无论经过哪个焦点,面积都相同设经过F1(1,0),则L的方程为y=x-1设交点坐标为(x1,y1)(x2,y2)代入椭圆方程中(y+1)²/
由余弦定理:cos∠AOB=(OA^2+OB^2-AB^2)/2OA*OB∠AOB为锐角则cos∠AOB>0则OA^2+OB^2-AB^2>0设A(x1,y1),B(x2,y2)设直线方程为y=kx+