设n阶方阵A满足A^2 A-3I=0,证明A-I可逆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 06:54:54
第一题,可知A²-2A=3I,即A(A-2I)/3=I,两边左乘A逆有(A-2I)/3=A逆,即A逆=(A-2I)/3第二题,AB=0说明A不满秩,所以行列式为0计算式有-7(t+3)=0,
证明:设a是A的特征值则a^2-2a是A^2-2A的特征值因为A^2-2A=0所以a^2-2a=0所以a(a-2)=0所以a=0或a=2.即A的特征值只能是0或2.
证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^
A^2=E==>A^2-E=0==>(A+E)(A-E)=O|A+E|≠0所以A+E可逆那么方程(A+E)x=0只有0解也就是说A-E的每一列都是0,所以A-E=O
证:R(A+3E)+R(A-E)=R(A+3E)+R(E-A)≥R(A+3E+E-A)=R(4E)=n①A²+2A-3E=0(A+3E)(A-E)=0R(A+3E)+R(A-E)≤n②由①、
(A+E)^3=A^3+3A^2+3A+E=0A(A^2+3A+3E)=-E所以A可逆,A^-1=-(A^2+3A+3E)
由已知,A^2-3A=0所以A(A-4E)+(A-4E)+4E=0所以(A+E)(A-4E)=-4E所以A-4E可逆,且(A-4E)^-1=-1/4(A+E).
[A+E]=[A+A*A']=[A][E+A']=[A][(A+E)']=[A]*[A+E]得到(1-[A])[A+E]=0因为|A|
因为A^2-A-2E=0所以A(A-E)=2E所以A-E可逆,且(A-E)^-1=(1/2)A.
A^2-A-2i=A^2-A*I-2I=(A-I)*(A)-2I=0所以(A-I)*(A/2)=I所以A-I的逆为A/2
(A-I)r(A-3I)=n是加号连接吧即r(A-I)+r(A-3I)=n因为A≠I,所以A-I≠0,所以r(A-I)>=1所以r(A-3I)
A^3-2A=-3IA^3-4A+2A-4i=-7I(A-2I)(A^2-2A+2I)=-7I∴ (A-2I)[-1/7·(A^2-2A+2I)]=I∴ A-2I可逆且(A-2I)
证:由已知,A^2=E,(A+E)(A-E)=0所以r(A+E)+r(A-E)
A*A-A-2i=0也就是(A-2I)(A+I)=0取行列式得|A-2I||A+I|=0也就是|A-2I|、|A+I|中必有一个为0那就不可逆了
A^2=AA=E===>A=A'=A^(-1)=A^*并且A不为0或(-E)因为E^2=E===>A^2-E^2=0===>(A+E)(A-E)=0--->A=EToyourquestion:IfAB
(A-E)A=A^2-A=3E,因此(A-E)A/3=E,A-E可逆,其逆为A/3.
因为A^2-A-3I=0所以A^2-A-2I=I所以(A-2I)*(A+I)=(A+I)*(A-2I)=I所以|A-2I|*|A+I|=|I|=1所以|A-2I|≠0且|A+I|≠0所以A-2I和A+
由A^2+A+2E=0,可以写成(-A/2)(A+E)=E,所以(A+E)^-1=-A/2.
由A^2-A-7E=0得:A(A-1)=7E故A(A-1)的行列式为7而不为0,假如A是不可逆矩阵,则A的行列式为0那么A(A-1)的行列式就为0矛盾,所以A可逆又原式可变为(A+2E)(A-3E)=