设Sn是等差数列{an}前n项 的和,已知3分之一s3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:06:45
设Sn是等差数列{an}前n项 的和,已知3分之一s3
设Sn是等差数列{an}的前n项和,求证:若正整数m,n,p成等差数列,则Sm/m,Sn/n,Sp/p也成等差数列.

Sn=[(a1+a1+(n-1)d]*n/2=[2a1+(n-1)d)]*n/2Sm/m={[2a1+(m-1)d)]*m/2}/m=a1+(m-1)d/2Sn/n=a1+(n-1)d/2Sp/p=a

设数列{an}的前n项和为Sn,若对任意正整数,都有Sn=n(a1+an)/2,证明{an}是等差数列.

an=Sn-Sn-1=n(a1+an)/2-(n-1)(a1+an-1)/22an=na1+nan-na1-nan-1+a1+an-1(n-2)an=(n-1)*(an-1)-a1(1)同理(n-1)

设Sn是等差数列{an}的前n项和,已知S6=36,Sn=324,Sn-6=144,则n=(  )

∵Sn=324,Sn-6=144,∴Sn-Sn-6=an-5+an-4+…+an=180又∵S6=a1+a2+…+a6=36,a1+an=a2+an-1=a6+an-5,∴6(a1+an)=36+18

设Sn是等差数列{an}的前n项和,若S7=35,则a4=______.

S7=(a1+a7)•72=35,∴a1+a7=10∴2a4=a1+a7=10,a4=5故答案为5.

设等差数列{an}的公差是d,如果它的前n项和Sn=-n2,那么(  )

当n=1时,a1=S1=-1.当n≥2时,an=Sn-Sn-1=-n2-[-(n-1)2]=1-2n,当n=1时也成立.∴d=-2.故选C.

设Sn是等差数列[an}的前n项和,若S7=5,则a4=

解;因为[an}是等差数列,根据等差性质,所以有S7=a1+a2+a3+a4+a5+a6+a7=7a4=5,a4=5/7.

设Sn、Tn分别是等差数列an、bn的前n项和,Sn/Tn=(7n+2)/(n+3),则a6/b5=?

这个就要比a6/b6复杂多了.设{an}公差为d1,{bn}公差为d2.Sn/Tn=[na1+n(n-1)d1/2]/[nb1+n(n-1)d2/2]=[2a1+(n-1)d1]/[2b1+(n-1)

设Sn是等差数列{an}的前n项和,若S3S6=13,则S6S12=(  )

设等差数列{an}的首项为a1,公差为d,由等差数列的求和公式可得S3S6=3a1+3d6a1+15d=13,可得a1=2d且d≠0,∴S6S12=6a1+15d12a1+66d=27d90d=310

设数列an的前n项和为sn,对于所有的自然数n都有sn=n(a1+an)/2,求证an是等差数列

证:第一种方法Sn+1=(n+1)[a1+a(n+1)]/2Sn=n(a1+an)/2Sn-1=(n-1)[a1+a(n-1)]/2a(n+1)=Sn+1-Sn=(n+1)[a1+a(n+1)]/2-

设Sn是等差数列An的前n项和,若S3/S6=1/3,则S6/S12等于

等差数列S3,S6-S3,S9-S6,S12-S9也成等差数列S3/S6=1/3,S6=3S3,S6-S3=2S3S9-S6=3S3,S9=6S3S12-S9=4S3,S12=10S3所以S6/S12

设Sn,Tn分别是两个等差数列{an}{bn}的前n项之和,若Sn/Tn=7n+1/4n+27,则an:bn=?

设Sn=k(7n^2+n)an=Sn-S(n-1)=k(14n-6)Tn=k(4n^2+27n)bn=Tn-T(n-1)=k(8n+23)an:bn==(14n-6)/(8n+23)再问:错·再答:哪

设Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列.

(Ⅰ)当q=1时,S3=3a1,S9=9a1,S6=6a1,∵2S9≠S3+S6,∴S3,S9,S6不成等差数列,与已知矛盾,∴q≠1.(2分)由2S9=S3+S6得:2•a1(1−q9)1−q=a1

已知等差数列{an}中,Sn是它前n项和,设a6=2,S10=10.

(1)设数列{an}首项,公差分别为a1,d.则由已知得a1+5d=2①10a1+10×92d=10②联立①②解得a1=-8,d=2,所以an=2n-10(n∈N*).(2)bn=a2n=2•2n-1

设Sn是等差数列{an}的前n项和,若a5a3=59,则S9S5=(  )

设等差数列{an}的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴s9s5=a1+a92×9a1+a52×5=9a55a3=95×59=1,故选A.

设Sn是等差数列{an}的前n项和,若a

由题意可得S13S7=13(a1+a13)27(a1+a7)2=13(a1+a13)7(a1+a7)=13×2a77×2a4=137×a7a4=137×2=267.故答案为:267

设Sn是等差数列an的前n项和,已知a2=3,S11=121,则S7等于

S11=11(a1+a11)/2=11a6/2=121,所以a6=22a2=3,所以2a4=a2+a6,所以a4=25/2s7=7(a1+a7)/2=7a4/2=175/4

一道关于等差数列的题设Sn为等差数列{An}的前n项和 求证:数列{n分之Sn}是等差数列

Sn=n(A1+An)/2设Bn=Sn/n=(A1+An)/2Bn-B(n-1)=(A1+An)/2-[A1+A(n-1)]/2=[An-A(n-1)]/2=d/2=常数∴{Sn/n}是等差数列

设Sn是等差数列{an}的前n项和,a12=-8,S9=-9,﹛Sn/n﹜是等差数列,求﹛Sn/n﹜的前n项的和

(13n-n2)/413倍的N减去N的平方除以4我郁闷有人算的比我快~我可是用画图画了半天呢!

设Sn是等差数列an的前n项和,a5=2,an-4=30(n≥5,n∈N*),Sn=136,求n

在等差数列{an}中,a1+an=a2+a(n-1)=a3+a(n-2)=a4+a(n-3)=a5+a(n-4),又前n项和的公式为Sn=n(a1+an)/2,∴Sn=n[a5+a(n-4)]/2,由