设xy是相互独立的随机变量,fx=1,fy=2y 求z=x y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 06:43:25
xy为独立变量,D(2X-3y)=2^2Dx+3^2DY=4*6+9*3=51
解,由题意知X和Y独立,且D(X)=4,D(Y)=9,由方差公式知:D(3X-2Y)=9D(X)+4D(Y),可得:D(3X-2Y)=9D(X)+4D(Y)=9×4+4×2=44,故选:D.
var(z)=Var(2x-y)=4var(x)-4cov(x,y)+var(y)=16+0+9=25标准差为开平方5
用联合密度的方法去求,算z和x的联合密度,再对其密度关于x积分,就可以了
P(Z=0)=P(X=0){P(Y=0)+P(Y=-1)}=0.3P(Z=1)=1-P(Z=0)=0.7如有意见,欢迎讨论,共同学习;如有帮助,
如图(点击可放大):Y的方差,我是用最基本的积分(分部积分)做的,也可以用指数分布的性质做:Y是 λ=1的指数分布,所以它的期望:E(Y)=1/ λ=1它的方差:D(Y)=1/&n
X的概率密度f(x)=1,希望可以帮到你,不懂的再追问再问:还真的不懂,有过程吗?!再答:对于X在(a,b)上服从均匀分布,可以得概率密度f(x)=1/(b-a)
1.XY相互独立,相关系数r=02.E(Z)=E(2X+Y)=2E(X)+E(Y)=03.D(Z)=[(2X+Y)^2]=4D(X)+D(Y)+4E(X)E(Y)=4+1+0=54.N(0,5)5.f
大哥是F分布的定义啊F(5,4)
密度函数f(x)=1,0
我希望没看错你的题目,是f(x)=e^-x,我想是这个吧.U=X+Y,V=X-Y.一般的方式是这样因为二者相互独立,so ,fX,Y(x,y)=fX(x)×fY(y)=(e^-x)(e^-y
解题思路了讲到这后面的积分自己先积一积不懂追问再问:谢谢,明白了,但是木有更简单一点的么~~~~~再答:放心~是没有捷径滴而且这样做计算量不算很大,耐心一点就行了
分布函数和密度函数是等价的.FZ(z)=P(X+Y
正态分布具有可加性,X-Y也是正态分布E(X-Y)=EX-EY=1D(X-Y)=DX+DY=13X-Y~N(1,13)
∵X,Y相互独立,∴X^2,Y^2也相互独立(1)D(XY)=E[XY-E(XY)]^2=E(XY-EXEY)^2=E(X^2Y^2)=E(X^2)E(Y^2)=E[(X-EX)^2]E[(Y-EY)
F(z)=P(Z≤z)=P(min(X,Y)≤Z)=1-P(min(X,Y)>Z)=1-P(X>Z,Y>Z)=1-P(X>Z)P(X>Z)=1-[1-P(X≤Z)][1-P(Y≤Z)]=1-[1-F1
求导就得书上的答案.再问:不好意思时间过去有点长忘记题目了,不过你的那个p(x
相互独立再问:那如果设f(x)为概率密度,那么f(2x)=2f(x)还是f(2x)呢?谢谢!再答:先给分吧再问:请讲一下吧,谢谢!再答:第一个再答:再答:对其求导
U(0,1)--->fX(x)=1,E(2)-->fY(y)=2e^(-2y)X与Y是相互独立的随机变量-->f(x,y)=fX(x)*fY(y)=2e^(-2y)0=Y^2(都是正的)-->x>y-
fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx(1)z<0fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx=0(2)0≤z<1fZ(z)=∫(0→z)1·1dx=z(3)1≤z<2f