设y=f(x)是方程y'-2y 4y=0的一个解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:41:45
设y=f(x)是方程y'-2y 4y=0的一个解
设y=f(x)是由方程xy+lnx+y=1所确定的函数,求dy.

方程两边同时求x对y的导:y+xdy/dx+1/x+2ydy/dx=0,dy/dx=-(y+1/x)/(x+2y),dy=-(y+1/x)dx/(x+2y)

设y=f(x)是二次函数,方程y=f(x)=0有两个相等的实根,且f'(x)=2x+2.

(1)由导数可知f(x)=x^2+2x+c,由条件可知c=1,所以f(x)=x^2+2x+1;(2)把函数积分t=-1+1/2^(1/3)

设y=y(x)是由方程xy+e^y=y+1所确定的隐函数,求d^2y/dx^2 x=0

xy+e^y=y+1(1)求d^2y/dx^2在x=0处的值:(1)两边分别对x求导:y+xy'+e^yy'=y'y/y'+x+e^y=1(2)(2)两边对x再求导一次:(y'y'-yy'')/y'^

高等函数 隐函数导 1、 设y=f(x)是由方程y=1+xe^y所确定的,求y的导

y=1+xe^y两边对x求导得y'=e^y+xe^y*y'(是对x求导那么e^y就是一个复合函数了所以最后要在对y求导)(1-xe^y)y'=e^y∴y'=e^y/(1-xe^y)再问:还不是很明白这

设y=f(x)是由方程cos^2(x^2+y)=x所确定的方程 求f'(x)

两边对x求导:2cos(x^2+y)*(-sin(x^2+y))*(2x+y')=1所以y'=-1/sin(2x^2+2y)-2x再问:求f'(x)```再答:y'就是f'(x)啊。。。。。

设y=y(x)是由方程y^2f(x)+xf(y)=x^2确定,其中f(x)是x的可微函数,试求dy/dx.

两边对x求导:2yy'f(x)+y^2f'(x)+f(y)+xy'f(y)=2x则y'=[2x-f(y)-y^2f'(x)]/[2yf(x)+xf(y)]再问:给的那个f(x)是x可微函数什么意思再答

设函数y=f(x)由方程sin(x^2+y)=xy 确定,求dy\dx

这个题目要利用隐函数的求导法则.则sin(x^2+y)=xy(两边同时求导,还要结合复合函数的求导法则)cos(x^2+y)*(2x+y′)=y+xy′2xcos(x^2+y)-y=xy′-y′cos

设函数f(x)是定义在R上的非常值函数,且对任意x,y有f(x+y)=f(x)f(y).(2)设A={(x,y)|f(x

我写了过程,不懂可以再问我~LS的思路对,但结果好象不对希望能帮助到你~

大一微积分,设z=(x,y)是由方程x^2+y^2-z=f(x,y,z)确定的函数,f可,f'不等于-1,则dz=?答案

两边对x求偏导得到2x-Dz/Dx=Df/Dx+Df/DzDz/Dx得到Dz/Dx=(2x-Df/Dx)/(Df/Dz+1)对y求偏导得到2y-Dz/Dy=Df/Dy+Df/DzDz/Dy得到Dz/D

设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y)

令x=y=0,则f(0)=f(0)+f(0),f(0)=0;令y=-x,则f(0)=f(x)+f(-x)=0,f(-x)=-f(x),x定义域是关于原点对称的,所以函数为奇函数;f(x)+f(2+x)

设函数Y=f(x)由方程xy+y^2-2x=0,则dy/dx=?

xy+y^2-2x=0y+xy'+2yy'-2=0(x+2y)y'=2-yy'=(2-y)/(x+2y)dy/dx=(2-y)/(x+2y)

设(x,y)的概率密度是f(x,y)=Ae^-(x+2y),x>0,y>0,求常数A,求(x,y)的分布函数

第一小题:考察的是连续型随机变量概率密度的性质∫∫f(x,y)dxdy=1是x,y的二重积分,积分上下限是0到正无穷大,不是不定积分,是定积分.积分完了就不会有x和y了,你的这个式子“2A(1-e^-

设函数y=f(x)定义在实数集上,则函数y=f(x-2)与y=f(2-x)的图像的对称轴方程是

y=f(x)与y=f(-x)关于y轴对称y=f(x)向右2平移2个单位得到y=f(x-2)y=f(-x)向右平移2个单位得到y=f[-(x-2)]即y=f(2-x)所以y=f(x-2)与y=f(2-x

设函数y=y(x)由方程y^2 f(x)+xf(x)=x^2确定,其中f(x)为可微函数,求dy.

两边对x求导得:2yy'*f(x)+y^2f'(x)+f(x)+xf'(x)=2x得:y'=[2x-xf'(x)-y^2f'(x)]/(2yf(x)]dy=[2x-xf'(x)-y^2f'(x)]/(

设y=y(x)由方程xe^f(u)=e^y确定,其中f的二阶可导,且f'≠1求d^2(y)/dx^2

xe^f(u)=e^yx=e^[y-f(u)]1=e^[y-f(u)][y'-f'(u)u']y'=e^[f(u)-y]+f'(u)u'y''={e^[f(u)-y]+f'(u)u'}=e^[f(u)

设函数y=f(x)由方程y=xe^y确定,求dy/dx 为什么 y'=e^y+xe^y*y'

y'=(x)'e^y+x(e^y)'y'=e^y+xe^y*y'再问:x(e^y)'=xe^y*y'?再答:对,因为y是x的函数,根据复合函数求导法,可得

设f(x+y,xy)=x^2+y^2,则f(x,y)

f(x+y,xy)=x^2+y^2=(x+y)^2-2xyf(x,y)=x^2-2y

设Y=F(x)是由函数方程ln(x+2y)=x^2+y^2所确定的隐函数,求Y

F(x,y)=x^2+y^2-ln(x+2y)Fx=2x-1/(x+2y)Fy=2y-2/(x+2y)F(x)=-Fx/Fy=-[2x(x+2y)-1]/[2y(x+2y)-2]