设y=y(x)是由方程ln(x∧2 y∧2)=x y所确定的隐函数,求dy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:12:57
y'=(lnlnx)'/lnlnx=(lnx)'/lnxlnlnx=1/xlnxlnlnx
(1)y=3x^2-ln1/x=3x^2+lnxdy=6xdx+(1/x)dx=(6x+1/x)dx(2)y=e^(-x)cosxdy=-e^(-x)cosxdx-e^(-x)sinxdx=-e^(-
lny+x/y=0等式两边求导:y'*1/y+1/y+x*y'(-1/y²)=0(1/y-x/y²)y'=-1/y∴y'=(-1/y)/(1/y-x/y²)=-y/(y-
dy/dx=(dy/dt)/(dx/dt)=[2t/(1+t^2)]/[1-1/(1+t^2)]=2/t
ln(x^2+y+1)=x^3+sinxx^2+y+1=e^(x^3+sinx)y=e^(x^3+sinx)-x^2-1y(2/n)=e^(8/n^3+sim(2/n))-4/n^2-1∴ny(2/n
z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)
x=0则lny=0y=1两边对x求导[1/(x²+y)]*(x²+y)'=3x²+cosx(2x+y')/(x²+y)=3x²+cosxy'=(x&s
两边都对x求导有(2x+dy/dx)/(xˆ2+y)=3xˆ2y+xˆ3dy/dx+cosx得dy/dx=(3xˆ4y+3xˆ2yˆ2+x&
x=z(lny-lnz)对x求导1=∂z/∂x*(lny-lnz)+z*(0-1/z*∂z/∂x)1=∂z/∂x(lny-lnz
不就是对x求导吗?把y看成中间变量y=y(x)说明要想导x要通过y这个中间变量两边对x求导:y^3+(3x*y^2)*dy/dx+(e^x)*siny+(e^x)*cosy*dy/dx=1/x下面你自
方程x^2-z^2+lny-lnz=0两端对x求导得2x-2zz'x-z'x/z=0z'x=2x/(2z+1/z)两端对y求导得-2zz'y+1/y-z'y/z=0z'y=1/[y(2z+1/z)]因
答:xy+ln(x+e^2)+lny=0……(1)两边对x求导:y+xy'+1/(x+e^2)+y'/y=0……(2)x=0代入(1)和(2)得:0+2+lny=0y+0+1/e^2+y'/y=0解得
方程两边对x求导得2x+y′x2+y=3x2y+x3y′+cosxy′=2x−(x2+y)(3x2y+cosx)x5+x3y−1由原方程知,x=0时y=1,代入上式得y′|x=0=dydx|x=0=1
两边对x求导得y+xy'=(1+y')/(x+y)y(x+y)+x(x+y)y'=1+y'y'[x(x+y)-1]=1-y(x+y)y'=[1-y(x+y)]/[x(x+y)-1]dy=[1-y(x+
ln(x²+y²)=x+y-1两边对x求导得:(2x+2yy')/(x²+y²)=1+y'整理得:y'=(2x-x²-y²)/(x²
见图再问:不好意思啊~题目看错了,题目如图啊~
1.对x=ln(x+y)求微分,得dx=(dx+dy)/(x+y),∴dy=(x+y-1)dx,∴dy/dx=x+y-1.2.e^(xy)+y^3-5x=0,①求微分得e^(xy)*(ydx+xdy)
min是指f(x)g(x)h(x)三个函数中的最小值
主要利用复合函数的求导:z=f(y),y=g(x),则z对x求导dz/dx=f'(y)*(dy/dx).等式左边对x求导过程:d(lny)/dx=(1/y)y',等式右边对x求导过程:d(x-y)/d
F(x,y)=x^2+y^2-ln(x+2y)Fx=2x-1/(x+2y)Fy=2y-2/(x+2y)F(x)=-Fx/Fy=-[2x(x+2y)-1]/[2y(x+2y)-2]