设方阵A满足方程aA平方-A-3E=0,证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:00:03
设方阵A满足方程aA平方-A-3E=0,证明
设方阵A满足矩阵方程A^2+A-7E=0,证明A,A+E,A-2E均可逆,并求其逆

1,A(A+E)=7E,所以,A,A+E可逆,A^(-1)=(A+E)/7,(A+E)^(-1)=A/72,A^2+A-7E=0,A^2+A-6E=E,(A+3E)(A-2E)=E,所以A-2E可逆,

设n阶方阵A满足A的平方-5A+7E=0,证明3E-A可逆,并求(3E-A)的逆矩阵

A^2-5A+7E=0;A^2-5A+6E=-E;(A-2E)(A-3E)=-E;(3E-A)(A-2E)=E;即3E-A可逆,逆矩阵为A-2E

设A为2n+1阶方阵,且满足AA^T =E,|A|>0,证明行列式|A-E|=

|A-E|=|A-AA^T|=|A(E-A^T)|=|A||E-A^T|=|A||E-A|---(E-A^T)^T=E-A=|A|(-1)^(2n+1)|A-E|=-|A||A-E|所以|A-E|(1

设n阶方阵A满足:A的平方—A—2E=0,证明A及A+2E都可逆,并求其逆.

由题设得到A(A-E)=2E,那么A的逆就是1/2(A-E)而类似的(A+2E)(A-3E)=A²-A-6E=-4E,所以(A+2E)的逆为-1/4(A-3E)

证明:设方阵A满足关系式AA-2A-2E=0,证,A及A+2E均可逆,并求出逆矩阵.

由于A²-2A-2E=A(A-2E)-2E=0所以A(A-2E)=2EA(1/2)(A-2E)=E所以A可逆A逆为(1/2)(A-2E)而由于A²-2A-2E=(A-4E)(A+2

设n阶方阵A满足A平方=En,|A+En|不等于0,证明:A=En.

证明:由A^2=En得0=A^2-En=A^2-En^2=(A+En)(A-En)因为|A+En|≠0,故A+En必有逆矩阵(A+En)^(-1),上式两边左乘(A+En)^(-1),便得(A+En)

问一道线性代数题:设A为n阶方阵,满足AA^T=E(E是n阶单位矩阵),|A|

AA^T=E,|A|×|A^T|=|A|^2=1,|A|=1或-1.|A|<0,所以|A|=-1.A+E=A+AA^T=A(E+A^T)|A+E|=|A|×|E+A^T|=|A|×|A+E|=-|A+

设方阵A满足方程aA^2+bA+cE=0,证明A为可逆矩阵,并求A^-1(a,b,c为常数,c≠0)

证明:因为aA^2+bA+cE=0所以A(aA+bE)=-cE所以A[(-1/c)(aA+bE)]=E.所以A可逆,且A^-1=(-1/c)(aA+bE)

矩阵证明题:若n阶方阵满足AA^T=E,设a是n维列向量,a^Ta=/0矩阵A=E-3aa^T.

一个更正,问题中的“a=2/3”似乎有误,应为“a^Ta=2/3”首先可知A是一个对称阵,那么AA^T=E就等价于(E-3aa^T)(E-3aa^T)=E,展开就得E-6aa^T+9(a^Ta)(aa

设方阵A满足A平方+3A-E=0,则 (A+3E)的负1次方等于

A²+3A-E=0A(A+3E)=E所以(A+3E)^(-1)=A

设方阵A满足方程A平方-3A-10E=0,则A-1次方=

由:A^2-3A-10E=0得:A^2-3A=10E得:(1/10)[A^2-3A]=E即:(1/10)A(A-3E)=E.按定义有:A^(-1)=(1/10)(A-3E).(若AB=E,则A^(-1

设4阶方阵A满足/A+3E/=0,AA^T=2E,矩阵/A/

首先由|A+3E|=0知-3是A的一个特征值(a是A的特征值当且仅当|A-aE|=0),所以A^(-1)有特征值1/(-3)=-1/3;由AA^T=2E知|AA^T|=2,所以|A||A^T|=|A|

设方阵A满足A2(平方)-3A-2E=0,求(A-E)(-1次方)=?

A^2-3A+2E=(A-E)(A-2E)=4E, 由逆矩阵的定义有:A-E=1/4(A-2E)

设方阵A满足A的平方—A—E=0 ,证明A可逆,并求A的负一次方.

/>A^2-A-E=0那么A(A-E)-E=0A(A-E)=E所以A可逆,A^(-1)=A-E

线性代数提问:设方阵A满足A的平方=A.证明A的特征值只能为0或1

设A的特征值为λ,则|A-λE|=0同时AA=A,所以|AA-λE|=0所以AA和A的特征值相同而又有AA的特征值是A的平方,所以λ^2=λ,所以λ=1或者0

设A*为n阶方阵A的伴随矩阵,则AA*=A*A=

这是一个基本公式,AA*=A*A=|A|E,其中E是单位阵.经济数学团队帮你解答,请及时采纳.

线性代数设A是n阶方阵,证明:当1.AA∧T=E,2.A∧T=A,.3.A∧2=E中有两个条件满足时,一定满足第三个条件

1,2成立推导3成立。AAT=E①,AT=A②,②带入①则3成立。1,3成立推导2成立。AAT=E①,A²=E②,①②分别左乘A-1,得,AT=A-1,A=A-1,则2成立。2,3成立推导1

.设A为n阶方阵,且满足AA^T =E和|A|=-1,证明行列式|E+A|=0.

你是问的下面这三个等式为什么成立,还是你的标题的题目呢?如果是下面这三个等式的话第一个等式是因为(E+A')=E'+A'=(E+A)'第二个等式是因为一个矩阵的行列式与它的转置的行列式相等.

设A,B均为N阶方阵,满足AA(T)=E,B(T)B=E.|A|+|B|=0.证明:|A+B|=0.A(T)为A的转置.

由已知,得AA^T=A^TA=E,BB^T=B^TB=E|A|,|B|等于1或-1因为|A|+|B|=0所以|A|,|B|必为一正一负所以|A||B|=-1所以|A^T||B^T|=-1所以-|A+B